Skip to main content
Log in

Effect of elevated annealing temperature on the morphology, microstructure, conductivity and microwave absorption properties of phthalocyanine polymer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An aromatic, diether-linked phthalocyanine resin (Pc) was prepared from 4,4′-bis (3,4-dicyanophenoxy) biphenyl (BPh) and investigated for morphology, microstructure, dielectric, conductivity and microwave absorption properties at different annealing temperatures from 300 to 800 °C. The results showed that the annealing temperature could significantly change the morphology and microstructure of the Pc polymer, leading to the generation of carbon-Pc polymer composites, and enhance the microwave absorbing and electrical properties of the Pc polymer. The dramatic electrical and dielectric transition happened when the annealing condition was 550 °C 24 h. The conductivity of the samples exhibited a transition of electrical behavior from an insulator to semiconductor of approximately 10+2 S/cm. Pc polymer exhibited excellent microwave absorption properties in the frequency range of 0.5–18.0 GHz after sintering process. The microwave absorption of the annealing Pc polymer can be mainly attributed to the dielectric loss rather than magnetic loss. The sample annealed at 500 °C 24 h had two strong microwave absorbing peaks and achieved a maximum absorbing value of −44 dB around 10.7 and 17.5 GHz when the thickness was 3.0 mm. The novel carbon-Pc polymer composites were believed to have potential applications in the microwave absorbing area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.B. Sastri, T.M. Keller, J. Polym. Sci. Part A Polym. Chem. 36, 1885 (1998)

    Article  CAS  Google Scholar 

  2. T.M. Keller, D.D. Dominguez, Polymer 46, 4614 (2005)

    Article  CAS  Google Scholar 

  3. X.L. Yang, X.B. Liu, Chin. Chem. Lett. 21, 743 (2010)

    Article  CAS  Google Scholar 

  4. T.M. Keller, Polymer 34, 952 (1993)

    Article  CAS  Google Scholar 

  5. S.B. Sastri, J.P. Armistead, T.M. Keller, Polym. Compos. 17, 816 (1996)

    Article  CAS  Google Scholar 

  6. S.B. Sastri, J.P. Armistead, T.M. Keller, U. Sorathia, Polym. Compos. 18, 48 (1997)

    Article  CAS  Google Scholar 

  7. S.B. Sastri, T.M. Keller, J. Polym. Sci. Part A Polym. Chem. 37, 2105 (1999)

    Article  CAS  Google Scholar 

  8. G.P. Cao, W.J. Chen, X.B. Liu, Polym. Degrad. Stabil. 93, 739 (2008)

    Article  CAS  Google Scholar 

  9. W.T. Li, F. Zuo, K. Jia, X.B. Liu, Chin. Chem. Lett. 20, 348 (2009)

    Article  Google Scholar 

  10. F.B. Meng, R. Zhao, Y.Q. Zhan, Y.J. Lei, J.C. Zhong, X.B. Liu, Mater. Lett. 65, 264 (2011)

    Article  CAS  Google Scholar 

  11. K. Jia, R. Zhao, J.C. Zhong, X.B. Liu, J. Mater. Sci. 21, 708 (2010)

    CAS  Google Scholar 

  12. Y.J. Lei, G.H. Hu, R. Zhao, H. Guo, X. Zhao, X.B. Liu, J. Phys. Chem. Soli. 73, 1335 (2012)

    Article  CAS  Google Scholar 

  13. Z.C. Wang, X.L. Yang, J.J. Wei, M.Z. Xu, L.F. Tong, R. Zhao, X.B. Liu, J. Polym. Res. 19, 9969 (2012)

    Article  Google Scholar 

  14. T.M. Keller, Polym. Commun. 31, 229 (1990)

    CAS  Google Scholar 

  15. S.D. Bruck, Polymer 6, 319 (1965)

    Article  CAS  Google Scholar 

  16. T.M. Keller, J. Polym. Sci. Part A Polym. Chem. 26, 3199 (1988)

    Article  CAS  Google Scholar 

  17. M. Laskoski, T.M. Keller, S.B. Qadri, Polymer 48, 7484 (2007)

    Article  CAS  Google Scholar 

  18. Y.J. Lei, R. Zhao, Y.Q. Zhan, F.B. Meng, J.C. Zhong, X.L. Yang, X.B. Liu, Chem. Phys. Lett. 496, 139 (2010)

    Article  CAS  Google Scholar 

  19. T.M. Keller, Poly. Chem. 25, 2569 (1987)

    Article  CAS  Google Scholar 

  20. K.H. Wu, T.H. Ting, G.P. Wang, W.D. Ho, C.C. Shih, Polym. Degra. Stabl. 93, 483 (2008)

    Article  CAS  Google Scholar 

  21. X.L. Yang, Y.J. Lei, J.C. Zhong, R. Zhao, X.B. Liu, J. Appl. Polym. Sci. 119, 882 (2011)

    Article  CAS  Google Scholar 

  22. M.L. Rodríguez-Méndez, J. Souto, J.A. De Saja, J. Raman Spect. 26, 693 (1995)

    Article  Google Scholar 

  23. S.D. Bruck, Polymer 6, 319 (1965)

    Article  CAS  Google Scholar 

  24. C.J. Norrell, H.A. Pohl, J. Polym. Sci. Polym. Phys. Eidt. 12, 913 (1974)

    Article  CAS  Google Scholar 

  25. X.L. Dong, X.F. Zhang, H. Huang, F. Zuo, Appl. Phy. Lett. 92, 013127 (2008)

    Article  Google Scholar 

  26. M. Han, L. Deng, Appl. Phys. Lett. 90, 011108 (2007)

    Article  Google Scholar 

  27. L. Deng, M. Han, Appl. Phys. Lett. 91, 023119 (2007)

    Article  Google Scholar 

  28. Y.J. Lei, R. Zhao, G.H. Hu, X.L. Yang, X.B. Liu, J. Mater. Sci. 47, 4473 (2012)

    Article  CAS  Google Scholar 

  29. X.L. Shi, M.S. Cao, J. Yuan, Q.L. Zhao, Y.Q. Kang, X.Y. Fang, Y.J. Chen, Appl. Phys. Lett. 93, 183118 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank for financial support of this work from the National Natural Science Foundation (No. 51173021) and “863” National Major Program of High Technology (2012AA03A212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Yang, X., Xu, M. et al. Effect of elevated annealing temperature on the morphology, microstructure, conductivity and microwave absorption properties of phthalocyanine polymer. J Mater Sci: Mater Electron 24, 2610–2618 (2013). https://doi.org/10.1007/s10854-013-1140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1140-3

Keywords

Navigation