Skip to main content
Log in

Ferroelectric, electrical, and magnetic properties of BiFe0.95Mn0.05O3 thin films epitaxially grown on conductive Nb:SrTiO3 and La0.7Sr0.3MnO3-buffered Nb:SrTiO3 substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BiFe0.95Mn0.05O3 (BFMO) thin films with different thicknesses have been epitaxially grown on <001>-oriented Nb-doped SrTiO3 (NbSTO) and La0.7Sr0.3MnO3(LSMO)-buffered NbSTO substrates by pulsed laser deposition. At high bias field the space-charge-limited current (SCLC) is the dominant conduction mechanism for all BFMO films while at low bias field the Ohmic conduction is the predominant mechanism. An analysis of leakage current characteristics reveals that the ferroelectric properties are critically dependent on the density of defects in BFMO films. For the BFMO/LSMO/NbSTO structure, the coercive field of the BFMO film is much smaller than that of the BFMO film directly grown on the NbSTO substrate, which is attributed to the suppression of the substrate-induced clamping effect. For both BFMO/NbSTO and BFMO/LSMO/NbSTO structures, the ferroelectric hysteresis loops show no change under a magnetic field up to 9 T, which is explained in terms of weak ferromagnetic-ferroelectric coupling in the BFMO film and the very low magnetic-field-induced electric voltage drop across the LSMO layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Dawber, K.M. Rabe, J.F. Scott, Rev. Mod. Phys. 77, 1083 (2005)

    Article  CAS  Google Scholar 

  2. H. Deng, H.M. Deng, P.X. Yang, J.H. Chu, J. Mater. Sci.: Mater. Electron. 23, 1215–1218 (2011)

    Article  Google Scholar 

  3. H. Naganuma, S. Okamura, J. Appl. Phys. 101, 09M103 (2007)

  4. Z.K. Liu, Y.J. Qi, C.J. Lu, J. Mater. Sci.: Mater. Electron. 21, 380–384 (2009)

    Article  Google Scholar 

  5. K.Y. Yun, D. Ricinschi, T. Kanashima, M. Okuyama, Appl. Phys. Lett. 89, 192902 (2006)

    Article  Google Scholar 

  6. G.W. Dietz, W. Antpohler, M. Klee, R. Waser, J. Appl. Phys. 78, 6113 (1995)

    Article  CAS  Google Scholar 

  7. K.H. Ahn, S.S. Kim, S.G. Baik, J. Appl. Phys. 92, 421 (2002)

    Article  CAS  Google Scholar 

  8. H. Yang, Y.Q. Wang, H. Wang, Q.X. Jia, Appl. Phys. Lett. 96, 012909 (2010)

    Article  Google Scholar 

  9. Y. Shuai, S.Q. Zhou, S. Streit, H. Reuther, D. Bürger, S. Slesazeck, T. Mikolajick, M. Helm, H. Schmidt, Appl. Phys. Lett. 98, 232901 (2011)

    Article  Google Scholar 

  10. G.W. Pabst, L.W. Martin, Y.H. Chu, R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007)

    Article  Google Scholar 

  11. Z. Wen, X. Shen, J.X. Wu, D. Wu, A.D. Li, B. Yang, Z. Wang, H.Z. Chen, J.L. Wang, Appl. Phys. Lett. 96, 202904 (2010)

    Article  Google Scholar 

  12. Y.H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.J. Han, Q. He, N. Balke, C.H. Yang, D. Lee, W. Hu, Q. Zhan, P.L. Yang, A. Fraile-Rodriguez, A. Scholl, S.X. Wang, R. Ramesh, Nat. Mat. 7, 478–482 (2008)

    Article  CAS  Google Scholar 

  13. R. Magaraggia, M. Hambe, M. Kostylev, V. Nagarajan, R. Stamps, Phys. Rev. B 84, 104441 (2011)

    Article  Google Scholar 

  14. P. Yu, J.S. Lee, S. Okamoto, M. Rossell, M. Huijben, C.H. Yang, Q. He, J. Zhang, S. Yang, M. Lee, Q. Ramasse, R. Erni, Y.H. Chu, D. Arena, C.C. Kao, L. Martin, R. Ramesh, Phys. Rev. Lett. 105, 027201 (2010)

    Article  CAS  Google Scholar 

  15. F. Yan, T.J. Zhu, M.O. Lai, L. Lu, J. Appl. Phys. 110, 084102 (2011)

    Article  Google Scholar 

  16. D.Y. Wang, N.Y. Chan, R.K. Zheng, C. Kong, D.M. Lin, J.Y. Dai, H.L.W. Chan, S. Li, J. Appl. Phys. 109, 114105 (2011)

    Article  Google Scholar 

  17. F. Yan, T.J. Zhu, M.O. Lai, L. Lu, Appl. Phys. A 101, 651–654 (2010)

    Article  CAS  Google Scholar 

  18. M. Lampert, Phys. Rev. 103, 1648–1656 (1956)

    Article  CAS  Google Scholar 

  19. W.B. Luo, J. Zhu, H.Z. Zeng, X.W. Liao, H. Chen, W.L. Zhang, Y.R. Li, J. Appl. Phys. 109, 104108 (2011)

    Article  Google Scholar 

  20. F. Chen, B.Z. Li, R.A. Dufresne, R. Jammy, J. Appl. Phys. 90, 1898 (2001)

    Article  CAS  Google Scholar 

  21. S.Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D.G. Schlom, Y.J. Lee, Y.H. Chu, M.P. Cruz, Q. Zhan, T. Zhao, R. Ramesh, Appl. Phys. Lett. 87, 102903 (2005)

    Article  Google Scholar 

  22. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719–1722 (2003)

    Article  CAS  Google Scholar 

  23. X.H. Zhu, H. Béa, M. Bibes, S. Fusil, K. Bouzehouane, E. Jacquet, A. Barthélémy, D. Lebeugle, M. Viret, D. Colson, Appl. Phys. Lett. 93, 082902 (2008)

    Article  Google Scholar 

  24. H.W. Jang, S.H. Baek, D. Ortiz, C.M. Folkman, C.B. Eom, Y.H. Chu, P. Shafer, R. Ramesh, V. Vaithyanathan, D.G. Schlom, Appl. Phys. Lett. 92, 062910 (2008)

    Article  Google Scholar 

  25. D.H. Kim, H.N. Lee, M.D. Biegalski, H.M. Christen, Appl. Phys. Lett. 92, 012911 (2008)

    Article  Google Scholar 

  26. H.J. Liu, K. Yao, P. Yang, Y.H. Du, Q. He, Y.L. Gu, X.L. Li, S.S. Wang, X.T. Zhou, J. Wang, Phys. Rev. B. 82, 064108 (2010)

    Article  Google Scholar 

  27. M. Singh, W. Prellier, M. Singh, R. Katiyar, J. Scott, Phys. Rev. B. 77, 144403 (2008)

    Article  Google Scholar 

  28. J.G. Wu, J. Wang, J. Appl. Phys. 106, 054115 (2009)

    Article  Google Scholar 

  29. Y.K. Liu, Y.P. Yao, S.N. Dong, S.W. Yang, X.G. Li, Phys. Rev. B. 86, 075113 (2012)

    Article  Google Scholar 

  30. S. Choudhury, Y.L. Li, L.Q. Chen, Q.X. Jia, Appl. Phys. Lett. 92, 142907 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (Grant No. 51172259, 11090332), the 973 Program (Grant No. 2009CB623304), and the CAS/SAFEA International Partnership Program for Creative Research Teams.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. M. Li or R. K. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X.Q., Wang, W., Zheng, C. et al. Ferroelectric, electrical, and magnetic properties of BiFe0.95Mn0.05O3 thin films epitaxially grown on conductive Nb:SrTiO3 and La0.7Sr0.3MnO3-buffered Nb:SrTiO3 substrates. J Mater Sci: Mater Electron 24, 1677–1684 (2013). https://doi.org/10.1007/s10854-012-0995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0995-z

Keywords

Navigation