Skip to main content
Log in

Dielectric and pyroelectric properties of niobium based complex tungsten bronze ferroelectrics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper highlights the dielectric and pyroelectric properties of two new complex tungsten bonze ceramics (K2Pb2Eu2W2Ti4Nb4O30 and K2Pb2Nd2W2Ti4Nb4O30) which were prepared by a high temperature mixed oxide method. Room temperature X-ray structural analysis confirms the formation of single phase compounds. The SEM micrographs show uniform distribution of densely packed rod like grains. Variation of dielectric parameters with temperature (27–500 °C) and frequency (1–5 MHz) shows the phase transition at 315 and 299 °C for the above mentioned respective samples. The temperature dependence of hysteresis loops confirms the existence of ferroelectricity in the materials below transition temperature. The current variation with voltage at different temperatures shows the semiconducting behaviour of the materials. The nature of temperature dependent dc conductivity follows the Arrhenius equation, and reveals the negative temperature coefficient of resistance behaviour of the materials. The current (for a fixed voltage) variation with temperature shows that the materials have high pyroelectric co-efficient and figure of merit, thus making them useful for pyroelectric sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.K. Singh, R.N.P. Choudhary, Ferroelectrics 325, 7–14 (2005)

    Article  CAS  Google Scholar 

  2. M.S. Kim, J.H. Lee, J.J. Kim, H.Y. Lee, S.H. Cho, J. Solid State Elecchem. 10(1), 18–23 (2006)

    Article  CAS  Google Scholar 

  3. L. Fang, H. Zhang, T.H. Huang, R.Z. Yuan, H.X. Liu, J. Mat. Sci. 40(2), 533–535 (2005)

    Article  CAS  Google Scholar 

  4. B. Behera, P. Nayak, R.N.P. Choudhury, Mat. Lett. 59(27), 3489–3493 (2005)

    Article  CAS  Google Scholar 

  5. V. Hornebecq, C. Elissalde, J.M. Reau, J. Ravez, Ferroelectrics 238(1), 57–63 (2000)

    Article  Google Scholar 

  6. L.-X. Pang, H. Wang, D. Zhou, W.H. Liu, Mat. Chem. Phys. 123(2–3), 727–730 (2010)

    Article  CAS  Google Scholar 

  7. C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mat. Sci. 41, 5369–5375 (2006)

    Article  Google Scholar 

  8. P.R. Das, R.N.P. Choudhary, B.K. Samantray, Mat. Chem. Phys. 101(1), 228–233 (2007)

    Article  CAS  Google Scholar 

  9. P.R. Das, R.N.P. Choudhary, B.K. Samantray, J. Alloys Comp. 448, 32–37 (2008)

    Article  CAS  Google Scholar 

  10. P.R. Das, L. Biswal, B. Behera, R.N.P. Choudhary, Mat. Res. Bull. 44, 1214–1218 (2009)

    Article  CAS  Google Scholar 

  11. D.K. Pradhan, B. Behera, P.R. Das, J. Mat. Sci. Mater. Electron 23(3), 779–785 (2012)

    Article  CAS  Google Scholar 

  12. P. Ganguly, A.K. Jha, Int. Ferroelectr. 115, 149–156 (2010)

    Article  CAS  Google Scholar 

  13. P. Ganguly, S. Devi, A.K. Jha, Ferroelectrics 381, 152–159 (2009)

    Article  Google Scholar 

  14. P. Ganguly, A.K. Jha, J. Am. Ceram. Soc. 94(6), 1725–1730 (2011)

    Article  CAS  Google Scholar 

  15. M. Bouziane, M. Taibi, A. Boukhari, Mat. Chem. Phys. 129, 673–677 (2011)

    Article  CAS  Google Scholar 

  16. R. Padhee, P.R. Das, B.N. Parida, R.N.P. Choudhary, J. Mat. Sci. Mater. Electron. doi:10.1007/s10854-012-0647-3

  17. B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, J. Phy, Chem. Solids 73, 713–719 (2012)

    Article  CAS  Google Scholar 

  18. K. Chandramouli, R. Koduri, J. Mater. Sci. 44, 1793–1799 (2009)

    Article  CAS  Google Scholar 

  19. H.P. Klug, L.E. Alexander, X-Ray diffraction (Wiley Chester, England), 1974), pp. 966–969

    Google Scholar 

  20. Powd E.W., An interactive powder diffraction data interpretation and indexing program, ver 2.1, School of Physical Science, Finders University of South Australia, Bedford Park

  21. F. Liang, Z. Hui, W. Bolin, R.Y. Zhang, Progs. Cryst. Growth Charact. Mater. 40(1–4), 161–165 (2000)

    Article  Google Scholar 

  22. S.M. Pilgrim, A.E. Sutherland, S.R. Winzer, J. Am. Ceram. Soc. 73, 3122 (1990)

    Article  CAS  Google Scholar 

  23. L.E. Cross, Ferroelectrics 76, 241–267 (1987)

    Article  CAS  Google Scholar 

  24. G.G. Roberts, B. Holcroft, Thin Solid Films 180, 211–216 (1989)

    Article  CAS  Google Scholar 

  25. R. Colbrook, G.G. Roberts, Ferroelectrics 118, 199–207 (1991)

    Article  CAS  Google Scholar 

  26. R. Çapan, BAÜ FBE Dergisi Cilt:12, Sayı:1, Temmuz, 75–90 (2010)

  27. P. Ganguly, S. Devi, A.K. Jha, Ferroelectrics 381, 111–119 (2009)

    Article  CAS  Google Scholar 

  28. M. Petty, J. Tsibouklis, F. Davis, P. Hodge, M.C. Petty, W.J. Feast, J. Phy. D Appl. Phy. 25(6), 1032 (1992). doi:10.1088/0022-3727/25/6/023

    Article  CAS  Google Scholar 

  29. J.R. Macdonald, Solid State Ionics 13(2), 147–149 (1984)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padhee, R., Das, P.R., Parida, B.N. et al. Dielectric and pyroelectric properties of niobium based complex tungsten bronze ferroelectrics. J Mater Sci: Mater Electron 24, 799–806 (2013). https://doi.org/10.1007/s10854-012-0812-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0812-8

Keywords

Navigation