Skip to main content
Log in

Growth and properties of ZnO nanowires synthesized by a simple hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hexagonal ZnO nanowires were synthesized on pre-seeded silicon (100) substrates by a simple hydrothermal method at a relatively low temperature of 95 °C without any catalyst or template. The pre-seeded layer was produced using the sol–gel spin coating technique with 1 M zinc acetate in ethanol and ethanolamine. The structural properties of the nanowires were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD pattern indicated that the as-grown ZnO nanowires had the single-phase wurtzite structure, formed along the c-axis. SEM revealed that the nanostructure thin film had wire textures and the synthesis processes importantly influence the final size and shape of the ZnO nanowires. High-resolution transmission electron microscopy (HRTEM) provided further insight into the structure of ZnO nanostructures. The obtained HRTEM image was of the tip of an individual nanowire. The ZnO nanowires highly preferentially grew in the (002) crystal plane. The lattice spacing between adjacent (002) lattice planes was calculated to be 0.52 nm. The optical characteristics of the nanowires were determined from cathodoluminescence (CL) spectra. The CL revealed a fairly high surface state density of ZnO nanowires that grew at reaction concentrations of 0.01–0.25 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897–1899 (2001)

    Article  CAS  Google Scholar 

  2. X.D. Wang, C.J. Summers, Z.L. Wang, Nano. Lett. 4, 423–426 (2004)

    Article  CAS  Google Scholar 

  3. J.B. Baxter, A.M. Walker, K.V. Ommering, E.S. Aydil, Nanotechnology 17, S304–S312 (2006)

    Article  CAS  Google Scholar 

  4. D.I. Suh, S.Y. Lee, T.H. Kim, J.M. Chun, E.K. Suh, O.B. Yang, S.K. Lee, Chem. Phys. Lett. 442, 348–353 (2007)

    Article  CAS  Google Scholar 

  5. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Appl. Phys. Lett. 81, 3648–3650 (2002)

    Article  CAS  Google Scholar 

  6. J. Zhang, J. Liu, J.L. Huang, P. Kim, C.M. Lieber, Science 274, 757–760 (1996)

    Article  CAS  Google Scholar 

  7. P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R.R. He, H.J. Choi, Adv. Funct. Mater. 12, 323–331 (2002)

    Article  CAS  Google Scholar 

  8. C.X. Xu, X.W. Sun, B.J. Chen, P. Shum, S. Li, X. Hu, J. Appl. Phys. 95, 661–666 (2004)

    Article  CAS  Google Scholar 

  9. B.D. Yao, Y.F. Chan, N. Wang, Appl. Phys. Lett. 81, 757–759 (2002)

    Article  CAS  Google Scholar 

  10. D. Banerjee, J.Y. Lao, D.Z. Wang, J.Y. Huang, Z.F. Ren, D. Steeves, B. Kimball, M. Sennett, Appl. Phys. Lett. 83, 2061–2063 (2003)

    Article  CAS  Google Scholar 

  11. S. Kar, B.N. Pal, S. Chaudhuri, D. Chakravorty, J. Phys. Chem. B 110, 4605–4611 (2006)

    Article  CAS  Google Scholar 

  12. Y. Sun, N.G.N. Angwafor, D.J. Riley, M.N.R. Ashfold, Chem. Phys. Lett. 431, 352–357 (2006)

    Article  CAS  Google Scholar 

  13. Y. Sun, G.M. Fuge, M.N.R. Ashfold, Chem. Phys. Lett. 396, 21–26 (2004)

    Article  CAS  Google Scholar 

  14. J. W. P. Hsu, D. R. Tallant, R. L. Simpson, N. A. Missert, R. G. Copeland, Appl. Phys. Lett. 88, 252103-1–252103-3 (2006)

    Google Scholar 

  15. F. Xu, Z.Y. Yuan, G.H. Du, T.Z. Ren, C. Bouvy, M. Halasa, B.L. Su, Nanotechnology 17, 588–594 (2006)

    Article  CAS  Google Scholar 

  16. S.N. Bai, H.H. Tsai, T.Y. Tseng, Thin Solid Films 516, 155–158 (2007)

    Article  CAS  Google Scholar 

  17. S.N. Bai, Optoelectron. Adv. Mater. Rapid Commun 4, 654–656 (2010)

    CAS  Google Scholar 

  18. C.J. Pan, B.J. Pong, B.W. Chou, G.C. Chi, C.W. Tu, Phys. Stat. Sol (c) 3, 611–613 (2006)

    Article  CAS  Google Scholar 

  19. M.S. Mo, J.C. Yu, L.Z. Zhang, S.K. Li, Adv. Mater. 17, 756–760 (2005)

    Article  CAS  Google Scholar 

  20. Z. Fang, K.B. Tang, G.Z. Shen, D. Chen, R. Kong, S.J. Lei, Mater. Lett. 60, 2530–2533 (2006)

    Article  CAS  Google Scholar 

  21. S.N. Bai, T.Y. Tseng, J Mater Sci. Mater Electron 20, 604–608 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the National Nano Device Laboratories for equipment that was used in this research, under Contract No. NDL98-C05SP-051. Mr. K. L. Juan is appreciated for his assistance with the experiments. Ted Knoy is appreciated for his editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shr-Nan Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, SN. Growth and properties of ZnO nanowires synthesized by a simple hydrothermal method. J Mater Sci: Mater Electron 23, 398–402 (2012). https://doi.org/10.1007/s10854-011-0440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0440-8

Keywords

Navigation