Skip to main content
Log in

PVDF/PMMA blend pyroelectric thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper will present a complete manufacturing process for obtaining pyroelectric thin film sensors composed of a blend of PVDF and PMMA polymers. These sensors comprise a stack of metallic (Ti/Pt) electrodes around an active pyroelectric layer and are able to detect a temperature variation through the pyroelectric effect. Deposition is achieved with solution using a spin-coating and hot plate drying method. Addition of PMMA is a technique for promoting the crystallization of PVDF in the β phase, with one of the PVDF polymer chain conformations producing a ferroelectric behaviour. Analysis of the role of the solvent evaporation rate has been carried out with FTIR and indicates that low temperature evaporation (below 70 °C) leads to the presence of β phase in the material. Polarization curve measurement also indicates the ferroelectric behaviour of deposited layers. Finally a thermal transient response indicates a pyroelectric coefficient of 20 μC m−2 K−1 which is close to the bulk material value (27 μC m−2 K−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Mao, M.A. Quevedo-Lopez, H. Stiegler, B.E. Gnade, H.N. Alshareef, Org. Electron. 11(5), 925–932 (2010)

    Article  CAS  Google Scholar 

  2. A. Cuadra, M. Gasulla, V. Ferrari, Sens. Actuators A Phys. 158, 132–139 (2010)

    Article  Google Scholar 

  3. H. Kawai, Jpn. J. Appl. Phys. 8, 975–976 (1969)

    Article  CAS  Google Scholar 

  4. R. Gregorio, D. Sousa, Borges Polym 49, 4009–4016 (2008)

    Article  CAS  Google Scholar 

  5. R. Gregorio, M. Cestari, J. Polym. Sci. B Polym. Phys. 32(5), 859–870 (1994)

    Google Scholar 

  6. X. He, K. Yao, Appl. Phys. Lett. 89, 112909, 3 pages (2006). doi:10.1063/1.2352799

  7. S. Ramasundaram, S. Yoon, K.J Kim, J.S. Lee, Macromol Chem Phys 209(24), 2516–2526 (2008)

    Google Scholar 

  8. B. Mohammadi, A.A. Yousefi, S. Moemen Bellah, Polym. Test. 26, 42–50 (2007)

    Article  CAS  Google Scholar 

  9. Y. Kim, W. Kim, H. Choi, S. Hong, H. Ko, H. Lee, K. No, Appl. Phys. Lett. 96, 012908, 3 pages (2010). doi:10.1063/1.3290247

    Google Scholar 

  10. S. Chen, K. Yao, F. Eng Hock Tay, C. Lee Liow, J. Appl. Phys. 102, 104108 (2007)

    Article  Google Scholar 

  11. S. Schneider, X. Drujon, J.C. Wittmann, B. Lotz, Polymer 42, 8799–8806 (2001)

    Article  CAS  Google Scholar 

  12. A. Linares, J.L. Acosta, Eur Polym J 31(7), 615–619 (1995)

    Google Scholar 

  13. I.S. Elashmawi, N.A. Hakeem, Polym. Eng. Sci. 48(5), 895–901 (2008)

    Google Scholar 

  14. R. Waser, U. Böttger, S. Tiedke, Polar Oxides Properties, Characterization, and Imaging (Wiley, New York)

  15. S. Bauer, J.Appl. Phys. 80(10), 5531–5558 (1996)

    Google Scholar 

  16. M. Wegener, Rev. Sci. Instrum. 79, 106103, 3 pages (2008). doi:10.1063/1.2972169

  17. P. Shukla, M. Gaur, J. Appl. Polym. Sci. 114(1), 222–230 (1999)

  18. G.K. Narula, P.K.C. Pillai, J. Mater. Sci. Mater. Electron. 2, 209–215 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Charlot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlot, B., Gauthier, S., Garraud, A. et al. PVDF/PMMA blend pyroelectric thin films. J Mater Sci: Mater Electron 22, 1766–1771 (2011). https://doi.org/10.1007/s10854-011-0360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0360-7

Keywords

Navigation