Skip to main content
Log in

Preparation of zinc oxide nanorods by microwave assisted technique using ethylene glycol as a stabilizing agent

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc oxide nanorods have been synthesized by microwave assisted method using zinc nitrate, ethylene glycol and sodium hydroxide as a precursors. The material was characterized by XRD, SEM, EDAX and UV–Visible techniques. XRD analysis revealed all the relevant Bragg’s reflections for wurtzite (hexagonal phase) structure of zinc oxide. The average particle size was obtained 34 nm from the Williamson–Hall plot. The value of particle size determined from XRD was in good agreement with the SEM and TEM results. The direct optical band gap was found to be 3.13 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Baron, F.W. Campbell, I. Streeter, L. Xiao, R.G. Compton, Int. J. Electrochem. Sci. 3, 556 (2008)

    CAS  Google Scholar 

  2. A. Bayandori Moghaddam, M. Kazemzad, M.R. Nabid, H.H. Dabaghi, Int. J. Electrochem. Sci. 3, 291 (2008)

    Google Scholar 

  3. D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, A.P. Alivisatos, Nature 430, 190 (2004)

    Article  CAS  Google Scholar 

  4. D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)

    Article  Google Scholar 

  5. C.M. Lieber, Solid State Commun. 66, 5309 (1998)

    Google Scholar 

  6. Y. Zhang, K. Suenaga, C. Collies, S. Iijima, Science 281, 973 (1998)

    Article  CAS  Google Scholar 

  7. L. Vayssieres, K. Keis, A. Hagfeldt, S.-E. Lindquist, Chem. Mater. 13, 4395 (2001)

    Article  CAS  Google Scholar 

  8. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 292, 1947 (2001)

    Article  Google Scholar 

  9. J.A. Rodriguez, T. Jirsak, J. Dvorak, S. Sambasivan, D.J. Fischer, J. Phys. Chem. B 104, 319 (2000)

    Article  CAS  Google Scholar 

  10. W.-C. Shin, M.S. Wu, J. Cryst. Growth 137, 319 (1994)

    Article  Google Scholar 

  11. H.M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001)

    Article  CAS  Google Scholar 

  12. N.T. Hung, N.D. Quang, S. Bernik, J. Mater. Res. 16, 2817 (2001)

    Article  CAS  Google Scholar 

  13. N.F. Cooray, K. Kushiya, A. Fujimaki, D. Okumura, M. Sato, M. Ooshita, O. Yamase, Jpn. J. Appl. Phys. 38, 6213 (1999)

    Article  CAS  Google Scholar 

  14. R. Paneva, D. Gotchev, Sens. Actuat. A: Phys. 72, 79 (1999)

    Article  Google Scholar 

  15. E. Topoglidis, A.E.G. Cass, B. Oregan, J.R. Durrant, J. Electroanal. Chem. 517, 20 (2001)

    Article  CAS  Google Scholar 

  16. L. Gao, Q. Li, W.L. Luan, J. Am. Ceram. Soc. 85, 1016 (2002)

    Article  CAS  Google Scholar 

  17. C.X. Xu, X.W. Sun, Appl. Phys. Lett. 83, 3806 (2003)

    Article  CAS  Google Scholar 

  18. P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C.S. Lao, Z.L. Wang, Science 309, 1700 (2005)

    Article  CAS  Google Scholar 

  19. R.J. Lanf, W.D. Bond, Am. Ceram. Soc. Bull. 63, 278 (1984)

    Google Scholar 

  20. B.S.Shirke, A.A. Patil, P.P.Hankare, K.M.Garadkar, J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-010-0114-y

  21. E. Ivers-Tiffee, K. Seitz, Am. Ceram. Soc. Bull. 66, 1384 (1987)

    CAS  Google Scholar 

  22. J.S. Jie, G.Z. Wang, Q.T. Wang, Y.M. Chen, X.H. Han, P. Wang, J.G. Hou, J. Phys. Chem. B. 108, 11976 (2004)

    Article  CAS  Google Scholar 

  23. N.Y. Lee, M.S. Kim, J. Mater. Sci. 26, 1126 (1991)

    CAS  Google Scholar 

  24. S.M. Haile, D.W. Johnson, G.H. Wiseman, J. Am. Ceram. Soc. 72, 2004 (1989)

    Article  CAS  Google Scholar 

  25. W.J. Li, E.W. Shi, W.Z. Zhong, Z. Yin, J. Cryst. Growth 203, 186 (1999)

    Article  CAS  Google Scholar 

  26. B.G. Wang, E.W. Shi, W.Z. Zhong, Cryst. Res. Technol. 33, 937 (1998)

    Article  CAS  Google Scholar 

  27. C.H. Lu, C.H. Yeh, Ceram. Int. 26, 351 (2000)

    Article  CAS  Google Scholar 

  28. M.C. Neves, T. Trindade, A.M.B. Timmons, J.D. Pedrosa de Jesus, Mater. Res. Bull. 36, 1099 (2001)

    Article  CAS  Google Scholar 

  29. J.Q. Hu, Q. Li, N.B. Wong, C.S. Lee, S.T. Lee, Chem. Mater. 14, 1216 (2002)

    Article  CAS  Google Scholar 

  30. Y. Sun, G.M. Fuge, N.A. Fox, D.J. Riley, M.N.R. Ashfold, Adv. Mater. 17, 2477 (2005)

    Article  CAS  Google Scholar 

  31. Z. Gui, J. Liu, Z.Z. Wang, L. Song, Y. Hu, W.C. Fan, D.Y. Chen, J. Phys. Chem. B 109, 1113 (2005)

    Article  CAS  Google Scholar 

  32. Y.H. Ni, X.W. Wei, X. Ma and J.M. Hong. J. Cryst. Growth 283:48 (2005). Compounds. 77: 491 (2010)

  33. F. Gu, S.F. wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Langmuir, J. Sci. I.R.Iran 20, 3528 (2004)

    CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (KMG) thankful to UGC for the financial support under the Major Research Project [F.: 35- 337/09 (SR)]. Authors are thankful to Director, UGC-DAE, Indore for providing the TEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Garadkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghule, L.A., Shirke, B.S., Sapnar, K.B. et al. Preparation of zinc oxide nanorods by microwave assisted technique using ethylene glycol as a stabilizing agent. J Mater Sci: Mater Electron 22, 1120–1123 (2011). https://doi.org/10.1007/s10854-010-0270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0270-0

Keywords

Navigation