Skip to main content
Log in

Reaction kinetic, magnetic and microwave absorption studies of SrFe11.2Ni 0.8O19 hexaferrite nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nickel substituted strontium hexaferrite, SrFe11.2Ni 0.8O19 nanoparticles having super paramagnetic nature were synthesised by co-precipitation of chloride salts using 7.5 M sodium hydroxide solution. The resulting precursors were heat treated (HT) at 900 and 1,200 °C for 4 h in nitrogen atmosphere. During heat treatment, transformation proceeds as a constant rate of nucleation and three dimensional growth with activation energy of 183.724 kJ/mole. The hysteresis loops showed an increase in saturation magnetization from 1.045 to 65.188 emu/g with increasing HT temperatures. The ‘as-synthesised’ particles have size in the range of 20–25 nm with spherical and needle shapes. Further, these spherical and needle shaped nanoparticles tend to change their morphology to hexagonal plates with increase in HT temperatures. The effect of such a systematic morphological transformation of nanoparticles on dielectric (complex permitivity and permeability) and microwave absorption properties were estimated in X band (8.2–12.2 GHz). The maximum reflection loss of the composite powder reaches −24.92 dB at the thickness of 2.2 mm which suits its application in RADAR absorbing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B. Vishwanathan, V.R.K. Murthy, Ferrite Materials Science and Technology (Narosa, New Delhi, 1990)

    Google Scholar 

  2. O. Masala, D. Hoffman, N. Sundaram, K. Page, T. Proffen, G. Lawes, R. Seshadri, Solid State Sci. 8, 1015 (2006)

    Article  CAS  Google Scholar 

  3. T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, K. Inomata, J. Magn. Magn. Mater. 281, 195 (2004)

    Article  CAS  Google Scholar 

  4. J.R. Liu, M. Itoh, K.I. Machida, Appl. Phys. Lett. 88, 062503 (2006)

    Article  Google Scholar 

  5. V. Sunny, P. Kurian, P. Mohanan, P.A. Joy, M.R. Anantharaman, J. Alloys Cmpds. 489, 297 (2010)

    Article  CAS  Google Scholar 

  6. T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, G. Kordas, J. Magn. Magn. Mater. 246, 360 (2002)

    Article  CAS  Google Scholar 

  7. H. Zhao, X. Sun, C. Mao, J. Du, Physica B 404, 69 (2009)

    Article  CAS  Google Scholar 

  8. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, New Jersey, 2008)

    Book  Google Scholar 

  9. T.S. Chin, S.L. Hsu, M.C. Deng, J. Magn. Magn. Mater. 120, 64 (1993)

    Article  CAS  Google Scholar 

  10. X. Liu, J. Wang, L.M. Gan, S.C. Ng, J. Magn. Magn. Mater. 195, 452 (1999)

    Article  CAS  Google Scholar 

  11. M. Sivakumar, A. Gedanken, W. Zhong, Y.W. Du, D. Bhattacharya, Y. Yeshurun, I. Felner, J. Magn. Magn. Mater. 268, 95 (2004)

    Article  CAS  Google Scholar 

  12. J. Huang, H. Zhuang, W. Li, J. Magn. Magn. Mater. 256, 390 (2003)

    Article  CAS  Google Scholar 

  13. M. O’Donoghue, A Guide to Man-Made Gemstones (Van Nostrand Reinhold, Great Britain, 1983), pp. 40–44

    Google Scholar 

  14. K.S. Suslick, Its Chemical, Physical and Biological Effects (VCH, Weinheim, 1988)

    Google Scholar 

  15. Z. Negahdari, A. Saberi, M.W. Porada, J. Alloys Cmpds. 485, 367 (2009)

    Article  CAS  Google Scholar 

  16. M.G. Hasab, S.A.S. Ebrahimi, A. Badiei, J. Eur. Ceram. Soc. 27, 3637 (2007)

    Article  Google Scholar 

  17. M.M. Hessien, M.M. Rashad, K. El-Barawy, J. Magn. Magn. Mater. 320, 336 (2008)

    Article  CAS  Google Scholar 

  18. J.M. Criado, A. Ortega, Acta Metal. 35, 1715 (1987)

    Article  CAS  Google Scholar 

  19. C.D. Doyle, J. Appl. Polym. Sci. 6, 639 (1962)

    Article  CAS  Google Scholar 

  20. S. Tyagi, R.C. Agarwala, V. Agarwala, Trans. Indian Inst. Metals 63, 15 (2010)

    Article  CAS  Google Scholar 

  21. S. Tyagi, R.C. Agarwala, V. Agarwala, J. Nano Res. 10, 19 (2010)

    Article  CAS  Google Scholar 

  22. R. Sharma, R.C. Agarwala, V. Agarwala, Mater. Lett. 62, 2233 (2008)

    Article  CAS  Google Scholar 

  23. R. Sharma, R.C. Agarwala, V. Agarwala, J. Nano Res. 2, 91 (2008)

    Article  CAS  Google Scholar 

  24. Y.P. Fu, C.H. Lin, J. Alloys Cmpds. 386, 222 (2005)

    Article  CAS  Google Scholar 

  25. A. Ataie, S. Heshmati-Manesh, J. Eur. Ceram. Soc. 21, 1951 (2001)

    Article  CAS  Google Scholar 

  26. M.R. Meshram, N.K. Agarwal, B. Sinha, P.S. Misra, J. Magn. Magn. Mater. 271, 207 (2004)

    Article  CAS  Google Scholar 

  27. T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, G. Kordas, J. Magn. Magn. Mater. 246, 360 (2002)

    Article  CAS  Google Scholar 

  28. S. Ruan, B. Xu, H. Suo, F. Wu, S. Xiang, M. Zhao, J. Magn. Magn. Mater. 212, 175 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Ministry of Human Resource Development (MHRD), Govt of India for the fellowship granted to first author of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyagi, S., Agarwala, R.C. & Agarwala, V. Reaction kinetic, magnetic and microwave absorption studies of SrFe11.2Ni 0.8O19 hexaferrite nanoparticles. J Mater Sci: Mater Electron 22, 1085–1094 (2011). https://doi.org/10.1007/s10854-010-0265-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0265-x

Keywords

Navigation