Skip to main content
Log in

Structural and electrical properties of Ba5SmTi3V7O30 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline sample of Ba5SmTi3V7O30 was prepared by a high-temperature solid-state reaction technique. Structural and microstructural characterizations were performed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). X-ray preliminary structural studies reveal that the material has orthorhombic structure at room temperature. Detailed electrical (dielectric and impedance) properties of the material studied by using a complex impedance spectroscopy (CIS) technique in a wide temperature range (33–450 °C) at different frequencies (102–106 Hz) reveal that the relative dielectric constant of the material increases with rise in temperature and thus bulk has a major contribution to its dielectric and electrical properties. The bulk resistance of the material decreases with rise in temperature exhibiting a typical negative temperature coefficient of resistance (NTCR) behavior. The nature of the temperature variation of conductivity and value of activation energy, suggest that the conduction process is of mixed-type (ionic–polaronic and space charge). The existence of ferroelectricity in the compound was confirmed from polarization study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Szwagierczak, J. Kulawik, J. Eur. Ceram. Soc. 24, 1979 (2004). doi:10.1016/S0955-2219(03)00358-3

    Article  CAS  Google Scholar 

  2. H. El Alaoui-Belghiti, R. Von der Mu¨hll, A. Simon, M. Elaatmani, J. Ravez, Mater. Lett. 55, 138 (2002). doi:10.1016/S0167-577X(01)00636-X

    Article  CAS  Google Scholar 

  3. N. Wakiya, J.K. Wang, A. Saiki, K. Shinozaki, N. Mizutani, J. Eur. Ceram. Soc. 19, 1071 (1999). doi:10.1016/S0955-2219(98)00376-8

    Article  CAS  Google Scholar 

  4. M.R. Raju, R.N.P. Choudhary, J. Phys. Chem. Solids 64, 847 (2003). doi:10.1016/S0022-3697(02)00417-1

    Article  ADS  Google Scholar 

  5. X.M. Chen, Z.Y. Xu, J. Li, J. Mater. Res. 15, 125 (2000). doi:10.1557/JMR.2000.0021

    Article  CAS  ADS  Google Scholar 

  6. L.G. Van Uitert, S. Singh, H.J. Levinstein, Appl. Phys. Lett. 11, 61 (1967). doi:10.1063/1.1755079

    Google Scholar 

  7. J.J. Rubin, L.G. Van Uitert, H.J. Levinstein, J. Cryst. Growth 1, 315 (1967). doi:10.1016/0022-0248(67)90039-5

    Article  CAS  ADS  Google Scholar 

  8. W. Wersing, Electronic ceramics, Chap 4 (Elsevier, New York, 1991)

    Google Scholar 

  9. W. Wersing, Curr. Opin. Solid State Mater. Sci. 1, 715 (1996). doi:10.1016/S1359-0286(96)80056-8

    Article  CAS  Google Scholar 

  10. T. Negas, G. Yeager, S. Bell, R. Amren, Chemistry of electronic ceramic materials, NIST Special Publication 804, (NIST, USA, 1990)

  11. R.J. Cava, J.J. Krajewski, R.S. Roth, Mater. Res. Bull. 33, 527 (1998). doi:10.1016/S0025-5408(98)00002-6

    Article  CAS  Google Scholar 

  12. R. Umemura, H. Ogawa, A. Yokoi, H. Ohsato, A. Kan, J. Alloy. Comp. 424, 388 (2006). doi:10.1016/j.jallcom.2006.01.017

    Article  CAS  Google Scholar 

  13. H. Ogawa, A. Yokoi, R. Umemura, A. Kan, J. Eur. Ceram. Soc. 27, 3099 (2007). doi:10.1016/j.jeurceramsoc.2006.11.031

    Article  CAS  Google Scholar 

  14. P. Khatri, B. Behera, V. Srinivas, R.N.P. Choudhary, Curr. Appl. Phys. 9, 515 (2009)

    Article  ADS  Google Scholar 

  15. Powd, E.Wn.: An interactive powder diffraction data interpretationand indexing Program, Ver 2.1, School of Physical Science, Finders University of South Australia Bedford Park,SA 5042, Australia

  16. H.P. Klung, L.B. Alexander, X-ray diffraction procedures (Wiley, New York, 1974), p. 687

    Google Scholar 

  17. B. Harihara Venkataraman, K.B.R. Varma, J. Phys. Chem. Solids 66, 1640 (2005). doi:10.1016/j.jpcs.2005.05.076

    Article  ADS  Google Scholar 

  18. B. Behera, P.Nayak, R.N.P. Choudhary, J. Phys. Chem. Solids 69, 1990 (2008)

    Article  CAS  ADS  Google Scholar 

  19. P.S. Sahoo, A. Panigrahi, S.K. Patri, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. (in press)

  20. C. Kittel, Introduction to solid state physics, 5th edn. (Wiley, New York, 1976)

    Google Scholar 

  21. J.C. Anderson, Dielectrics (Chapman & Hall, London, 1964)

    Google Scholar 

  22. P.S. Sahoo, A. Panigrahi, S.K. Patri, R.N.P. Choudhary, Mod. Phys. Lett. B 22(30), 2999 (2008)

    Article  CAS  ADS  Google Scholar 

  23. R.N.P. Choudhary, K.S. Singh, R. Sati, Proc. Natl. Acad. Sci. India 63(A), 567 (1993)

    CAS  Google Scholar 

  24. S. Rao, P.S.V. Rao, K. Sambasiva Rao, A. Bhanumathi, J. Mater. Sci. Lett. 6, 809 (1987). doi:10.1007/BF01729020

    Article  CAS  Google Scholar 

  25. B. Behera, P.Nayak, R.N.P. Choudhary, Curr. Appl. Phys. 9, 201 (2009)

    Article  ADS  Google Scholar 

  26. A.K. Jonscher, Nature 267, 673 (1977). doi:10.1038/267673a0

    Article  CAS  ADS  Google Scholar 

  27. J. RossacDonald, Impedance spectroscopy (Wiley, New York, 1987)

    Google Scholar 

  28. J. Plocharski, W. Wieczoreck, Solid State Ion. 28, 979 (1988). doi:10.1016/0167-2738(88)90315-3

    Article  Google Scholar 

  29. C.K. Suman, K. Prasad, R.N.P. Choudhary, Adv. Appl. Ceram. 104, 294 (2005). doi:10.1179/174367605X62580

    Article  CAS  Google Scholar 

  30. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    CAS  Google Scholar 

  31. F. Borsa, D.R. Torgeson, S.W. Martin, H.K. Patel, Phys. Rev. B 46, 795 (1992)

    ADS  Google Scholar 

  32. H. Jain, C.H. Hsieh, J. Non-Cryst. Solids 1408, 172 (1994)

    Google Scholar 

  33. S.R. Elliot, J. Non-Cryst. Solids 170, 97 (1994). doi:10.1016/0022-3093(94)90108-2

    Article  ADS  Google Scholar 

  34. B. Roling, J. Non-Cryst. Solids 244, 34 (1999). doi:10.1016/S0022-3093(98)00847-3

    Article  CAS  ADS  Google Scholar 

  35. B. Behera, P.Nayak, R.N.P. Choudhary, Mater. Chem. Phys. 106, 193 (2007)

    Article  CAS  Google Scholar 

  36. S. Saha, T.P. Sinha, Phys. Rev. B 65, 134103 (2002). doi:10.1103/PhysRevB.65.134103

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. P. Choudhary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, P.S., Panigrahi, A., Patri, S.K. et al. Structural and electrical properties of Ba5SmTi3V7O30 ceramics. J Mater Sci: Mater Electron 21, 160–167 (2010). https://doi.org/10.1007/s10854-009-9887-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-009-9887-2

Keywords

Navigation