Skip to main content
Log in

Frequency-dependent dielectric and electric modulus properties of Li–Ni–Sm–Fe–O spinel embedded in conducting polymer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

An Erratum to this article was published on 10 June 2009

Abstracts

Conducting polymeric nanocomposite containing Li–Ni–Sm–Fe–O spinel was synthesized by the chemical oxidizing of aniline in the presence of LiNi0.5Sm0.08Fe1.92O4 particles. The dielectric and electric modulus properties of the as-prepared samples were investigated over a frequency range from 106 to 109 Hz. The dielectric constant (ε′), dielectric loss (ε″) and dissipation factor (tan δ) for all samples presented relatively high values at low frequency and were found to decrease with the frequency. The values of ε′, ε″ and tan δ of the nanocomposite were lower than that of the pristine PANI. Electric modulus analysis had been carried out to understand the electrical relaxation process. The dielectric relaxation time for the nanocomposite became longer due to the introduction of LiNi0.5Sm0.08Fe1.92O4 particles lowering the crystallinity of PANI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.G. MacDiarmid, Angew. Chem. Int. Ed. 40, 2581 (2001). doi:10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2

    Article  CAS  Google Scholar 

  2. A.J. Heeger, J. Phys. Chem. B 105, 8475 (2001). doi:10.1021/jp011611w

    Article  CAS  Google Scholar 

  3. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc. Chem. Commun. 16, 578 (1977). doi:10.1039/c39770000578

    Article  Google Scholar 

  4. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Nature 347, 530 (1990). doi:10.1038/347539a0

    Article  ADS  Google Scholar 

  5. R.H. Baughman, Synth. Met. 78, 339 (1996). doi:10.1016/0379-6779(96)80158-5

    Article  CAS  Google Scholar 

  6. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl. Sci. 258, 1474 (1992). doi:10.1126/science.258.5087.1474

    CAS  Google Scholar 

  7. N. Ahmad, A.G. MacDiarmid, Synth. Met. 78, 103 (1996). doi:10.1016/0379-6779(96)80109-3

    Article  CAS  Google Scholar 

  8. F. Ficicoglu, F. Kadirgan, J. Electroanal. Chem. 451, 95 (1998). doi:10.1016/S0022-0728(98)00086-2

    Article  Google Scholar 

  9. J.Q. Kan, X.H. Pan, C. Chen, Biosens. Bioelectron. 19, 1635 (2004). doi:10.1016/j.bios.2003.12.032

    Article  CAS  PubMed  Google Scholar 

  10. S. Kuwabata, S. Masui, H. Yoneyama, Electrochim. Acta 44, 4593 (1999). doi:10.1016/S0013-4686(99)00178-4

    Article  CAS  Google Scholar 

  11. H.L. Wang, A.G. MacDiarmid, Y.Z. Wang, D.D. Gebler, A.J. Epstein, Synth. Met. 78, 33 (1996). doi:10.1016/0379-6779(95)03569-6

    Article  CAS  Google Scholar 

  12. T. Mäkelä, S. Pienimaa, T. Taka, S. Jussila, H. Isotalo, Synth. Met. 85, 1335 (1997). doi:10.1016/S0379-6779(97)80259-7

    Article  Google Scholar 

  13. M.P. Pileni, Adv. Funct. Mater. 5, 323 (2001). doi:10.1002/1616-3028(200110)11:5<323::AID-ADFM323>3.0.CO;2-J

    Article  Google Scholar 

  14. F.Y. Cheng, C.H. Su, Y.S. Yang, C.S. Yeh, C.Y. Tsai, C.L. Wu, M.T. Wu, D.B. Shieh, Biomaterials 26, 729 (2005). doi:10.1016/j.biomaterials.2004.03.016

    Article  CAS  PubMed  Google Scholar 

  15. Q. Song, Z.J. Zhang, J. Am. Chem. Soc. 126, 6164 (2004). doi:10.1021/ja049931r

    Article  CAS  PubMed  Google Scholar 

  16. J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li, A.S.C. Chan, Polymer (Guildf.) 43, 2179 (2002). doi:10.1016/S0032-3861(02)00046-0

    Article  CAS  Google Scholar 

  17. Ö. Yavuz, M.K. Ram, M. Aldissi, P. Poddar, S. Hariharan, J. Mater. Chem. 15, 810 (2005). doi:10.1039/b408165j

    Article  CAS  Google Scholar 

  18. P. Xu, X. Han, J. Jiang, X. Wang, X. Li, A. Wen, J. Phys. Chem. C 111, 12603 (2007). doi:10.1021/jp073872x

    Article  CAS  Google Scholar 

  19. L. Li, J. Jiang, F. Xu, Mater. Lett. 61, 1091 (2007). doi:10.1016/j.matlet.2006.06.061

    Article  CAS  Google Scholar 

  20. C.C. Ku, R. Liepins, Electrical properties of polymers (Hanser Publishers, New York, 1987), pp. 25–92

    Google Scholar 

  21. D.D.L. Chung, in Composite materials science and applications, ed. by B. Derby (Springer, New Delhi, 2002), p. 73

    Google Scholar 

  22. S. Bhadra, N.K. Singha, D. Khastgir, Curr. Appl. Phys. 9, 396 (2009). doi:10.1016/j.cap.2008.03.009

    Article  ADS  Google Scholar 

  23. M. Ram, S. Chakrabarti, J. Alloy. Comp. 462, 214 (2008). doi:10.1016/j.jallcom.2007.08.001

    Article  CAS  Google Scholar 

  24. C.-H. Ho, C.-D. Liu, C.H. Hsieh, K.-H. Hsieh, S.-N. Lee, Synth. Met. 158, 630 (2008). doi:10.1016/j.synthmet.2008.04.014

    Article  CAS  Google Scholar 

  25. M.M. Ayad, E.A. Zaki, J. Appl. Polym. Sci. 110, 3410 (2008). doi:10.1002/app.28311

    Article  CAS  Google Scholar 

  26. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    CAS  Google Scholar 

  27. H.M.E. Ghanem, H. Attar, H.S. Ahmad, S. Abduljawad, Int. Polym. Mater. 55, 663 (2006). doi:10.1080/00914030500323318

    Article  Google Scholar 

  28. M.G. Han, S.S. Im, J. Appl. Polym. Sci. 82, 2760 (2001). doi:10.1002/app.2129

    Article  CAS  Google Scholar 

  29. B.K. Sharma, A.K. Gupta, N. Khare, S.K. Dhawan, H.C. Gupta, Synth. Met. 159, 391 (2009). doi:10.1016/j.synthmet.2008.10.010

Download references

Acknowledgments

This work was supported by Scientific Research Start-up Foundation of China West Normal University (07B005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Jiang.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10854-009-9911-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, L., Jiang, J. & Li, L. Frequency-dependent dielectric and electric modulus properties of Li–Ni–Sm–Fe–O spinel embedded in conducting polymer. J Mater Sci: Mater Electron 21, 206–210 (2010). https://doi.org/10.1007/s10854-009-9885-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-009-9885-4

Keywords

Navigation