Skip to main content
Log in

Physical and electrical properties of polyimide/ceramic hybrid films prepared via non-hydrolytic sol–gel process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, TiO2 and SiO2 were chosen as ceramic fillers in the 3,3′,4,4′-benzophenone tetracarboxylic dianhydride–4,4′-oxydianiline (BTDA–ODA) polyimide matrix. Physical properties of hybrids with up to 30 wt% SiO2 and 7 wt% TiO2 were evaluated and discussed. Nano-size ceramic particles were prepared by non-hydrolytic sol–gel (NHSG) process. SEM micrographs show that both films have nano-sized ceramic particles with a narrow size distribution. Thermal conductivities of the hybrids increase from 0.12 to 0.21 W/m-K, as the SiO2 and TiO2 in the hybrid increases from 0 to 30 and 7 wt%, respectively. Electrical surface resistivity slightly decreases with increasing ceramic filler content. Dielectric constant of the hybrid increases from 2.45 to 2.72 with the incorporation of the 7 wt% (5.4 vol%) TiO2. Water absorption decreases considerably with increasing filler content. With 30 wt% (20.2 vol%) SiO2 addition, the water absorption of the hybrid film reduces by 85% from that of pure polyimide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Ahmad, J.E. Mark, Chem. Mater. 13, 3320–3330 (2001). doi:10.1021/cm010175n

    Article  CAS  Google Scholar 

  2. H. Wang, W. Zhong, P. Xu, Q. Du, Macromol. Mater. Eng. 289, 793–799 (2004). doi:10.1002/mame.200400002

    Article  CAS  Google Scholar 

  3. L. Liu, Q. Lu, J. Yin, Z. Zhu, D. Pan, Z. Wang, Mater. Sci. Eng. C 22, 61–65 (2002). doi:10.1016/S0928-4931(01)00312-5

    Google Scholar 

  4. A. Shimojima, N. Umeda, K. Kuroda, Chem. Mater. 13, 3610–3616 (2001). doi:10.1021/cm0101125

    Article  CAS  Google Scholar 

  5. Z. Wang, T.J. Pinnavaia, Chem. Mater. 10, 1820–1826 (1998). doi:10.1021/cm970784o

    Article  CAS  Google Scholar 

  6. Y. Kim, E. Kang, Y.S. Kwon, W.J. Cho, C. Cho, M. Chang, M. Ree, T. Chang, C.S. Ha, Synth. Met. 85, 1399–1400 (1997). doi:10.1016/S0379-6779(97)80291-3

    Article  CAS  Google Scholar 

  7. J. Wu, S. Yang, S. Gao, A. Hu, J. Liu, L. Fan, Eur. Polym. J. 41, 73–81 (2005). doi:10.1016/j.eurpolymj.2004.08.014

    Article  CAS  Google Scholar 

  8. S.H. Xie, B.K. Zhu, J.B. Li, X.Z. Wei, Z.K. Xu, Polym. Test. 23, 797–801 (2004). doi:10.1016/j.polymertesting.2004.03.005

    Article  CAS  Google Scholar 

  9. Y. Tong, Y. Li, F. Xie, M. Ding, Polym. Int. 49, 1543–1547 (2000). doi:10.1002/1097-0126(200011)49:11<1543::AID-PI535>3.0.CO;2-B

    Article  CAS  Google Scholar 

  10. L. Liu, Q. Lu, J. Yin, X. Qian, W. Wang, Z. Zhu, Z. Wang, Mater. Chem. Phys. 74, 210–213 (2002). doi:10.1016/S0254-0584(01)00456-4

    Article  CAS  Google Scholar 

  11. Y. Kong, H. Du, J. Yang, D. Shi, Y. Wang, Y. Zhang, W. Xin, Desalin. 146, 49–55 (2002). doi:10.1016/S0011-9164(02)00476-9

    Article  CAS  Google Scholar 

  12. Z.K. Zhu, Y. Yang, J. Yin, Z.N. Qi, J. Appl. Polym. Sci. 73, 2977–2984 (1999). doi:10.1002/(SICI)1097-4628(19990929)73:14<2977::AID-APP22>3.0.CO;2-J

    Article  CAS  Google Scholar 

  13. Y. Kim, W.K. Lee, W.J. Cho, C.S. Ha, M. Ree, T. Chang, Polym. Int. 43, 129–136 (1997). doi:10.1002/(SICI)1097-0126(199706)43:2<129::AID-PI715>3.0.CO;2-S

    Article  CAS  Google Scholar 

  14. J.N. Hay, H.M. Rval, Chem. Mater. 13, 3396–3403 (2001). doi:10.1021/cm011024n

    Article  CAS  Google Scholar 

  15. G.H. Hsiue, J.K. Chen, Y.L. Liu, J. Appl. Polym. Sci. 76, 1609–1618 (2000). doi:10.1002/(SICI)1097-4628(20000613)76:11<1609::AID-APP1>3.0.CO;2-W

    Article  CAS  Google Scholar 

  16. T. Brankova, V. Bekiari, P. Lianos, Chem. Mater. 15, 1855–1859 (2003). doi:10.1021/cm0212055

    Article  CAS  Google Scholar 

  17. H.L. Tyan, K.H. Wei, T.E. Hsieh, J. Appl. Polym. Sci. Part B. Polym. Phys. 38, 2873–2878 (2000). doi:10.1002/1099-0488(20001115)38:22<2873::AID-POLB20>3.0.CO;2-T

    Article  CAS  Google Scholar 

  18. A. Templeton, X. Wang, S.J. Penn, S.J. Webb, L.F. Cohen, N.M. Alford, J. Am. Ceram. Soc. 83, 95–100 (2000). doi:10.1111/j.1151-2916.2000.tb01154.x

    Article  CAS  Google Scholar 

  19. T.A. Shantalii, I.L. Karpova, K.S. Dragan, E.G. Privalko, V.P. Privalko, Sci. Technol. Adv. Mater. 4, 115–119 (2005). doi:10.1016/S1468-6996(03)00030-5

    Article  CAS  Google Scholar 

  20. J.K. Kim, C. Hu, R.S.C. Woo, M.L. Sham, Compos. Sci. Technol. 65, 805–813 (2005). doi:10.1016/j.compscitech.2004.10.014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sea-Fue Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SF., Wang, YR., Cheng, KC. et al. Physical and electrical properties of polyimide/ceramic hybrid films prepared via non-hydrolytic sol–gel process. J Mater Sci: Mater Electron 21, 104–110 (2010). https://doi.org/10.1007/s10854-009-9876-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-009-9876-5

Keywords

Navigation