Skip to main content
Log in

Light absorption in coated ellipsoidal quantum lenses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the framework of adiabatic approximation the energy states of electron and direct light absorption in coated ellipsoidal quantum lens is investigated. Analytical expressions for particle energy spectrum is obtained taking into account that electron effective masses are different in the coat and in quantum lens. Obtained results were applied for the case of rectangular quantum well of finite height. The investigation of energy level dependence on geometrical parameters of quantum lens was performed. In particular, it has been shown, that the particle energy is equidistant for both ellipsoidal and spherical segment cases, and dependence of energy on geometrical parameters has root character. Influence of the presence of a coating at a quantum lens on direct light absorption is investigated. Dependence of edge of absorption on geometrical parameters of a quantum lens and coating is obtained. The selection rules as in case of presence so and at absence of a coating for both ellipsoidal and spherical segment cases were derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.M. Petroff et al., Mater. Res. Bull. 21, 50 (1996)

    CAS  Google Scholar 

  2. A. Zangwill, Physics at Surfaces (Cambridge University Press, Cambridge, 1988)

    Google Scholar 

  3. A. Wojs et al., Phys. Rev. B 54, 5604 (2001)

    Article  ADS  Google Scholar 

  4. S.-S. Li, J.-B. Xia, Nanoscale Res. Lett. 1, 167–171 (2006)

    Article  ADS  Google Scholar 

  5. S. Fafard et al., Phys. Rev. B 50, 8086 (1994)

    Article  ADS  CAS  Google Scholar 

  6. M. Grundmann et al., Phys. Rev. Lett. 74, 4043 (1995)

    Article  PubMed  ADS  CAS  Google Scholar 

  7. S. Lee et al., Phys. Rev. B 61, R2405 (2000)

    Article  ADS  CAS  Google Scholar 

  8. A. Lorke et al., Phys. Rev. Lett. 84, 2223 (2000)

    Article  PubMed  ADS  CAS  Google Scholar 

  9. L.C. Lew Yan Voon et al., J. Phys. Condens. Matter 14, 13667 (2002)

    Article  Google Scholar 

  10. C. Trallero-Herrero et al., Phys. Rev. E 64, 056237–1 (2001)

    Article  ADS  CAS  Google Scholar 

  11. A. Chanchapanyan, in Proceedings of the Fifth International Conference “Semiconductor Micro- and Nanoelectronics” (2005), p. 189

  12. D. Leonard et al., Phys. Rev. B 50, 11687 (1994)

    Article  ADS  CAS  Google Scholar 

  13. M. Bayer et al., Nature (London) 405, 923 (2000)

    Article  ADS  CAS  Google Scholar 

  14. A. Rodriguez et al., Phys. Rev. B 63, 125319 (2001)

    Article  ADS  Google Scholar 

  15. L. Wang et al., Appl. Phys. Lett. 76, 339 (2000)

    Article  ADS  CAS  Google Scholar 

  16. R. Warburton et al., Nature (London) 405, 926 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Al.L. Efros, A.L. Efros, Phys. Tech. Semicond. 16, 772 (1982)

    Google Scholar 

  18. M.A. Cusack, P.R. Briddon, M. Jaros, Physica B 253, 10 (1998)

    Article  CAS  Google Scholar 

  19. U. Banin et al., J. Chem. Phys. 109, 6 (1998)

    Article  Google Scholar 

  20. K. Dvoyan, in Proc. of Semicond. Micro and Nanoelectronics the Fifth National Conference Aghveran, Armenia (2005), pp. 169–172

  21. E. Rosencher, Ph. Bois, Phys. Rev. B 44, 11315 (1991)

    ADS  Google Scholar 

Download references

Acknowledgements

This research has been undertaken with financial support of NFSAT/CRDF grant GRASP-02/06 and Armenian State Target Program “Semiconductor Nanoelectronics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ani A. Tshantshapanyan.

Additional information

This paper was originally presented as part of the Special Issue: Selection of Papers from the 2007 Semiconducting and Insulating Materials Conference (SIMC-XIV).

Appendices

Appendix 1

1.1 Estimation of relative energy error at adiabatic approximation

Let us define relative error for one dimensional energy as ratio \( {{\left( {\varepsilon _{1}^{{num}} \left( r \right) - \varepsilon _{1}^{int} \left( r \right)} \right)} \mathord{\left/ {\vphantom {{\left( {\varepsilon _{1}^{{num}} \left( r \right) - \varepsilon _{1}^{int} \left( r \right)} \right)} {\varepsilon _{1}^{{num}} \left( r \right)}}} \right. \kern-\nulldelimiterspace} {\varepsilon _{1}^{{num}} \left( r \right)}} \), where \( \varepsilon _{1} \left( r \right) \) is exact numerically calculated energy of CC in one dimensional step-like quantum well, \( \varepsilon _{1}^{int} \left( r \right) \approx \alpha _{1} + \beta _{1}^{2} {\kern 1pt} r^{2} /4 \) is interpolated Taylor series of adiabatic approximated energy of CC. This estimation approach can be used as a useful tool for designing objects for practical applications from theoretically modeled samples.

According to Fig. 8 at utilization of the adiabatic approximation the magnitude of the error comprises 10−4, which demonstrates the high accuracy which is obtainable via implementation of this approximation.

Fig. 8
figure 8

Curve of relative energy error at adiabatic approximation

Appendix 2

$$I_{{n,n^{\prime}}} = \left| \begin{gathered} \frac{2}{{h_{1} \left(r \right)}}\int\limits_{0}^{{h_{1} \left( r \right)}} {\sin\left({\sqrt {\varepsilon _{1}^{e} \left( r \right)} z + \pi n}\right)\sin\left( {\sqrt {\varepsilon _{1}^{h} \left( r \right)} z +\pi n^{\prime}} \right)dz} \hfill \\ + \left( \begin{gathered}\frac{{e^{{2\sqrt {\frac{{\mu _{2} }}{{\mu _{1} }}\left( {U_{0} -\varepsilon _{1}^{e} \left( r \right)} \right)} h_{1} \left( r\right)}} - e^{{2\sqrt {\frac{{\mu _{2} }}{{\mu _{1} }}\left( {U_{0}- \varepsilon _{1}^{e} \left( r \right)} \right)} h_{1} \left( r\right)}} }}{{2\sqrt {\frac{{\mu _{2} }}{{\mu _{1} }}\left( {U_{0} -\varepsilon _{1}^{e} \left( r \right)} \right)} }} - \frac{{e^{{ -2\sqrt {\frac{{\mu _{2} }}{{\mu _{1} }}\left( {U_{0} - \varepsilon_{1}^{e} \left(r \right)} \right)} h_{1} \left( r \right)}} - e^{{- 2\sqrt {\frac{{\mu _{2} }}{{\mu _{1} }}\left( {U_{0} - \varepsilon_{1}^{e} \left( r \right)} \right)} h_{1} \left( r \right)}}}}{{2\sqrt {\frac{{\mu _{2} }}{{\mu _{1} }}\left( {U_{0} -\varepsilon _{1}^{e} \left( r \right)} \right)} }} \hfill \\ +2\left( {h_{2} \left( r \right) - h_{1} \left( r \right)} \right)\hfill \\ \end{gathered} \right)^{{ - {1 \mathord{\left/ {\vphantom{1 2}} \right. \kern-\nulldelimiterspace} 2}}} \hfill \\\times \left( \begin{gathered} \frac{{e^{{2\sqrt {\frac{{\mu _{2}}}{{\mu _{1} }}\left( {U_{0} - \varepsilon _{1}^{h} \left( r\right)} \right)} h_{1} \left( r \right)}} - e^{{2\sqrt {\frac{{\mu_{2} }}{{\mu _{1} }}\left( {U_{0} - \varepsilon _{1}^{h} \left( r\right)} \right)} h_{1} \left( r \right)}} }}{{2\sqrt {\frac{{\mu_{2} }}{{\mu _{1} }}\left( {U_{0} - \varepsilon _{1}^{h} \left( r\right)} \right)} }} - \frac{{e^{{ - 2\sqrt {\frac{{\mu _{2} }}{{\mu_{1} }}\left( {U_{0} - \varepsilon _{1}^{h} \left( r \right)}\right)} h_{1} \left( r \right)}} - e^{{ - 2\sqrt {\frac{{\mu _{2}}}{{\mu _{1} }}\left( {U_{0} - \varepsilon _{1}^{h} \left( r\right)} \right)} h_{1} \left( r \right)}} }}{{2\sqrt {\frac{{\mu_{2} }}{{\mu _{1} }}\left( {U_{0} - \varepsilon _{1}^{h} \left( r\right)} \right)} }} \hfill \\ + 2\left( {h_{2} \left( r \right) -h_{1} \left( r \right)} \right) \hfill \\ \end{gathered} \right)^{{- {1 \mathord{\left/ {\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}} \hfill \\ \times \int\limits_{{h_{1}\left( r \right)}}^{{h_{2} \left( r \right)}} {\left( {e^{{\sqrt{\frac{{\mu _{2} }}{{\mu _{1} }}\left( {U_{0} - \varepsilon _{1}^{e}\left( r \right)} \right)} z}} + e^{{ - \sqrt {\frac{{\mu _{2}}}{{\mu _{1} }}\left( {U_{0} - \varepsilon _{1}^{h} \left( r\right)} \right)} z}} } \right)\left( {e^{{\sqrt {\frac{{\mu _{2}}}{{\mu _{1} }}\left( {U_{0} - \varepsilon _{1}^{h} \left( r\right)} \right)} z}} + e^{{ - \sqrt {\frac{{\mu _{2} }}{{\mu _{1}}}\left( {U_{0} - \varepsilon _{1}^{h} \left( r \right)} \right)}z}} } \right)dz} \hfill \\ \end{gathered} \right|^{2} $$
$$J_{{N,N^{\prime}}}^{{n,n^{\prime}}} = \left|\begin{array}{l}\frac{{\sqrt {\beta _{n} } \sqrt {\left( {\frac{{N - \left| m\right|}}{2}} \right)!} \Upgamma \left( {\left| m \right| + 1}\right)}}{{\Upgamma ^{{{3 \mathord{\left/ {\vphantom {3 2}} \right.\kern-\nulldelimiterspace} 2}}} \left( {\left| m \right| + 1 +\frac{{N - \left| m \right|}}{2}} \right)}}\frac{{\sqrt {\beta_{{n^{\prime}}} } \sqrt {\left( {\frac{{N^{\prime} - \left|{m^{\prime}} \right|}}{2}} \right)!} \Upgamma \left( {\left|{m^{\prime}} \right| + 1} \right)}}{{\Upgamma ^{{{3 \mathord{\left/{\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}}} \left({\left| {m^{\prime}} \right| + 1 + \frac{{N^{\prime} - \left|{m^{\prime}} \right|}}{2}} \right)}} \\\times \int\limits_{0}^{{R_{0} }} e^{{ - \frac{{\beta _{n}r^{2} }}{4}}} e^{{ - \frac{{\beta _{{n^{\prime}}} r^{2} }}{4}}}\left( {\frac{{\beta _{n} r^{2} }}{2}} \right)^{{\frac{{\left| m\right|}}{2}}} \left( {\frac{{\beta _{{n^{\prime}}} r^{2} }}{2}}\right)^{{\frac{{\left| {m^{\prime}} \right|}}{2}}} {}_{1}F_{1}\left\{ { - \left( {\frac{{N - \left| m \right|}}{2}} \right),\left|m \right| + 1;\frac{{\beta _{n} r^{2} }}{2}} \right\} \\\quad \times {}_{1}F_{1} \left\{ { - \left( {\frac{{N^{\prime} - \left|{m^{\prime}} \right|}}{2}} \right),\left| {m^{\prime}} \right| +1;\frac{{\beta _{{n^{\prime}}} r^{2} }}{2}} \right\}rdr \end{array}\right|^{2}. $$

Here \( I_{{n,n^{\prime}}} \) is vertical direction integral, and \( J_{{N,N^{\prime}}}^{{n,n^{\prime}}} \) is radial integral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tshantshapanyan, A.A., Dvoyan, K.G. & Kazaryan, E.M. Light absorption in coated ellipsoidal quantum lenses. J Mater Sci: Mater Electron 20, 491–498 (2009). https://doi.org/10.1007/s10854-008-9753-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9753-7

Keywords

Navigation