Skip to main content
Log in

Seed-layer controlled synthesis of well-aligned ZnO nanowire arrays via a low temperature aqueous solution method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple and controllable method has been developed to synthesize well-aligned ZnO nanowire arrays on silicon and glass substrates in aqueous solution. A thin ZnO seed-layer coated with colloidal ZnO nanocrystals was introduced to control the density and orientation of ZnO nanowires. X-ray diffraction (XRD) and scanning electron microscopy (SEM) result show the high dense and well-aligned character of ZnO nanowires. The photoluminescence (PL) reveals the high crystal quality of the nanowires. It was found that the ZnO seed-layer can effect the size distribution, density and crystal structure of the nanowires. The growth mechanism of ZnO nanowires was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z.L. Wang, J. Phys. Condens. Matter. 16, R829 (2004)

    Article  CAS  Google Scholar 

  2. M. Law, L.E. Greene, J.C. Johnson, R. Saykaly, P. Yang, Nat. Mater. 4, 455 (2005)

    Article  CAS  Google Scholar 

  3. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science. 292, 1897 (2001)

    Article  CAS  Google Scholar 

  4. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13, 113 (2001)

    Article  CAS  Google Scholar 

  5. W.I. Park, D.H. Kim, S.W. Jung, G.C. Yi, Appl. Phys. Lett. 80, 4232 (2002)

    Article  CAS  Google Scholar 

  6. Y. Sun, G.M. Fuge, M.N.R. Ashfold, Chem. Phys. Lett. 396, 21 (2004)

    Article  CAS  Google Scholar 

  7. Y. Li, G.W. Meng, L.D. Zhang, F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)

    Article  CAS  Google Scholar 

  8. L. Vayssieres, K. Keis, S.E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001)

    Article  CAS  Google Scholar 

  9. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003)

    Article  CAS  Google Scholar 

  10. Q.C. Li, V. Kumar, Y. Li, H.T. Zhang, T.J. Marks, R.P.H. Chang, Chem. Mater. 17, 1001 (2005)

    Article  Google Scholar 

  11. Y. Tak, K.J. Yong, J. Phys. Chem. B 109, 19263 (2005)

    Article  CAS  Google Scholar 

  12. J.B. Cui, C.P. Daghlian, U.J. Gibson, R. Pusche, P. Geithner, L. Ley, J. Appl. Phys. 97, 044315 (2005)

    Article  Google Scholar 

  13. Y. Kajikawa, S. Noda, H. Komiyama, Chem. Vapor Deposit. 8, 99 (2002)

    Article  CAS  Google Scholar 

  14. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Appl. Phys. Lett. 78, 407 (2001)

    Article  CAS  Google Scholar 

  15. K. Vanheusden, C.H. Seager, W.L. Warren, T.D.R. Allant, J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996)

    Article  CAS  Google Scholar 

  16. N.O. Korsunska, L.V. Borkovska, B.M. Bulakh, L.Yu. Khomenkova V.I. Kushnirenko, I.V. Markevich, J. Lumin. 102, 733 (2003)

    Article  Google Scholar 

  17. P.O. Brien, J. McAleese, J. Mater. Chem. 8, 2309 (1998)

    Article  Google Scholar 

  18. J.G. Strom, H.W. Jun, J. Pharm. Sci. 69, 1261 (1980)

    Article  CAS  Google Scholar 

  19. K. Govender, D.S. Boyle, P.B. Kenway, P.O. Brien, J. Mater. Chem. 14, 2575 (2004)

    Article  CAS  Google Scholar 

  20. R.A. Laudise, A.A. Ballman, J. Phys. Chem. B 64, 688 (1960)

    Article  CAS  Google Scholar 

  21. Z.L. Wang, X.Y. Kong, Y. Ding, P. Gao, W.L. Hughes, R. Yang, Y. Zhang, Adv. Funct. Mater. 14, 943 (2004)

    Article  CAS  Google Scholar 

  22. H.M. Cheng, H.C. Hsu, S. Yang C.Y. Wu, Y.C. Lee, L.C. Lin, L.J. Lin, W.F. Hsieh, Nanotech. 16, 2882 (2005)

    Article  CAS  Google Scholar 

  23. L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, Nono. Lett. 5, 1231 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from Major Research Plan of National Natural Science Foundation of China (Grant No. 90406008) and National Major Fundamental Project: Nanomaterials and Nanostructures (Grant No. 2005CB623603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Ye, CH., Zhang, Y. et al. Seed-layer controlled synthesis of well-aligned ZnO nanowire arrays via a low temperature aqueous solution method. J Mater Sci: Mater Electron 19, 211–216 (2008). https://doi.org/10.1007/s10854-007-9319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9319-0

Keywords

Navigation