Skip to main content
Log in

Carbon nanotube enhanced diffraction efficiency in dye-doped liquid crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report on the optical properties of nematic liquid crystal cells containing the liquid crystal E7 doped with the azo dye Methyl Red at percentages ranging from 0.4% to 0.8% and 0.002% single-wall carbon nanotubes. From polarized absorption measurements an order parameter of S = 0.605 was obtained, showing that the dye molecules align themselves very well with the liquid crystal's director axis. Diffraction efficiencies of 532-nm pump and 670-nm probe beams were measured. Efficiencies and rise times were found to increase with dye concentration. A maximum efficiency of 5.8% was found for cells doped with carbon nanotubes, while cells without carbon nanotubes had a maximum efficiency of 3.2%. Therefore the presence of carbon nanotubes enhanced the diffraction efficiency by a factor of 1.8. The nonlinear index coefficient, n2, was calculated to be 18 × 10−3 cm2/W. The data are consistent with a grating formation based on trans-cis photoisomerism of the dye molecules that leads to a reorientation of the liquid crystal phase. These photonic devices are functional without the application of any external field, are easily prepared, and have lifetimes in excess of two years without any indication of degradation when stored at ambient temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. PAGLIUSI and G. CIPPARRONE, J. Opt. Soc. Am. B 21 (2004).

  2. G. CIPPARRONE, A. MAZZULLA and F. SIMONI, Opt. Lett. 23 (1998) 1505.

    CAS  Google Scholar 

  3. P. H. RASMUSSEN, P. S. RAMANUJAM, S. HVILSTED and R. H. BERG, J. Am. Chem. Soc. 121 (1999) 4738.

    Article  CAS  Google Scholar 

  4. S. MARTIN, C. A. FEELY and V. TOAL, Appl. Opt. 36 (1997) 5757.

    CAS  Google Scholar 

  5. B. KOHLER, S. BERNET, A. RENN and U. P. WILD, Opt. Lett. 18 (1993) 2144.

    Article  CAS  Google Scholar 

  6. A. AKELLA, S. L. SOCHAVA and L. HESSELINK, Opt. Lett. 22 (1997) 919.

    CAS  Google Scholar 

  7. M. PEI, Y.-J. WANG and G. O. CARLISLE, Opt. Eng. 40 (2001) 1481.

    Article  CAS  Google Scholar 

  8. K. ANDERLE and J. H. WENDORFF, Mol. Cryst. Liq. Cryst. 243 (1994) 51.

    CAS  Google Scholar 

  9. X. L. JIANG, L. LI, J. KUMAR, D. Y. KIM and S. K. TRIPATHY, Appl. Phys. Lett. 72 (1998) 2502.

    CAS  Google Scholar 

  10. P. ROCHON, A. NATANSOHN, C. L. CALLENDER and L. ROBITAILLE, Appl. Phys. Lett. 71 (1997) 1008.

    Article  CAS  Google Scholar 

  11. I. C. KHOO, S. SLUSSARENKO, B. D. GUENTHER, M.-Y. SHIH, P. CHEN and W. V. WOOD, Opt. Lett. 23 (1998) 253.

    CAS  Google Scholar 

  12. H. ONO and N. KAWATSUKI, Appl. Phys. Lett. 71 (1997) 1162.

    Article  CAS  Google Scholar 

  13. G. P. WIEDERRECHT and M. R. WASIELEWSKI, J. Am. Chem. Soc. 120 (1998) 3231.

    Article  CAS  Google Scholar 

  14. V. G. CHIGRINOV, “Liquid Crystal Devices: Physics and Applications’ (Artech House, Boston, 1999).

  15. P. YEH and C. GU, “Optics of Liquid Crystal Displays’ (John Wiley & Sons, New York, 1999).

    Google Scholar 

  16. P. J. COLLINS and J. S. PATEL (eds), “Handbook of Liquid Crystal Research” (Oxford University Press, New York, 1997).

    Google Scholar 

  17. Y.-J. WANG, M. PEI and G. O. CARLISLE, Opt. Lett. 28 (2003) 840.

    CAS  Google Scholar 

  18. I. C. KHOO, “Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena’ (John Wiley & Sons, New York, 1995).

    Google Scholar 

  19. I. C. KHOO, IEEE J. Quant. Elect. 32 (1996) 525.

    Article  CAS  Google Scholar 

  20. B. SAAD, M. M. DENARIEZ-ROBERGE and T. V. GALSTYAN, Opt. Lett. 23 (1998) 727.

    CAS  Google Scholar 

  21. Y.-J. WANG and G. O. CARLISLE, J. Mat. Sci. Mat. Elect. 13 (2002) 173.

    CAS  Google Scholar 

  22. T. V. GALSTYAN, B. SAAD and M. M. DENARIEZ-ROBERGE, J. Chem. Phys. 107 (1997) 9319.

    Article  CAS  Google Scholar 

  23. T. KOSA and I. JANOSSY, Opt. Lett. 20 (1995) 1230.

    Article  CAS  Google Scholar 

  24. Y. WANG and Z. GUO, Opt. Eng. 34 (1995) 1482.

    CAS  Google Scholar 

  25. A. G. CHEN and D. J. BRADY, Appl. Phys. Lett. 62 (1993) 2920.

    CAS  Google Scholar 

  26. A. G. CHEN and D. J. BRADY, Opt. Lett. 17 (1992) 1231.

    CAS  Google Scholar 

  27. K. ANDERLE, R. BIRENHEIDE, M. J. A. WERNER and J. H. WENDORFF, Liq. Cryst. 9 (1991) 691.

    CAS  Google Scholar 

  28. W. LEE and S.-L. YEH, Appl. Phys. 79 (2001) 4488.

    CAS  Google Scholar 

  29. I. C. KHOO, J. DING, Y. ZHANG, K. CHEN and A. DIAZ, Appl. Phys. Lett. 82 (2003) 3587.

    Article  CAS  Google Scholar 

  30. I. C. KHOO, Y. ZHANG, A. DIAZ, J. DING and K. CHEN, Proc. SPIE Int. Soc. Opt. Eng. 5213 (2003) 139.

  31. W. LEE, S.-L. YEA, C.-C. CHANG and C.-C. LEE, Optics Express 9 (2001) 791.

    Article  CAS  Google Scholar 

  32. K. OKANO, A. SHISHIDO, O. TSUTSUMI, T. SHIONO and T. IKEDA, Proc. SPIE Int. Soc. Opt. Eng. 5213 (2003) 147.

  33. J. PLEWA, E. TANNER, D. M. MUETH and D. G. GRIER, Optics Express 12 (2004) 1978.

    Article  CAS  Google Scholar 

  34. W. LEE, C.-Y. WANG and Y.-C. SHIH, Appl. Phys. Lett. 85 (2004) 513.

    CAS  Google Scholar 

  35. I. DIERKING, G. SCALIA and P. MORALES, J. Appl. Phys. 97 (2005) 309.

    Article  CAS  Google Scholar 

  36. I. C. KHOO, M.-Y. SHIH, M. V. WOOD, B. D. GUENTER, P. H. CHEN, F. SIMONI, S. S. SLUSSARENKO, O. FRANCESCANGELI and L. LUCCHETTI, Proc. IEEE 87 (1999) 1897.

  37. M. Y. SHIH, A. SHISHIDO, P. H. CHEN, M. V. WOOD and I. C. KHOO, Opts. Lett. 25 (2000) 978.

    CAS  Google Scholar 

  38. L. DENG and H.-K. LIU, Opt. Eng. 42 (2003).

  39. G. O. CARLISLE, to be published elsewhere.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. O. Carlisle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Carlisle, G.O. Carbon nanotube enhanced diffraction efficiency in dye-doped liquid crystal. J Mater Sci: Mater Electron 16, 753–759 (2005). https://doi.org/10.1007/s10854-005-4979-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-005-4979-0

Keywords

Navigation