Skip to main content
Log in

Creep rupture of lead-free Sn-3.5Ag and Sn-3.5Ag-0.5Cu solders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the creep rupture behavior of lead-free Sn-3.5Ag and Sn-3.5Ag-0.5Cu solders at three temperatures ranging from room temperature (RT) to 90 °C, under a tensile stress range of σ/E=10−4 to 10−3. The ultimate tensile strength (UTS) and creep resistance were found to be decreased with increasing temperature for each given lead-free solder. Both the binary and ternary Ag-containing alloys exhibited superior UTS and creep strength to the conventional Sn-37Pb solder at a similar temperature. Due to a more uniform distribution of eutectic phases and a larger volume fraction of intermetallic compounds (IMCs), the Sn-3.5Ag-0.5Cu alloy had greater UTS and creep strength than did the eutectic Sn-3.5Ag solder at each testing temperature. The stress exponents (n) of minimum strain rate (˙εmin) were decreased from 7 and 9 at RT to 5 and 6 at 60 and 90 °C, for the binary and ternary lead-free alloys, respectively. Fractography analyses revealed typical rupture by the nucleation and growth of voids/microcracks at IMCs on the grain boundaries. Both Monkman-Grant and Larson-Miller relationships showed good results in estimating the rupture times under various combinations of applied stress and temperature. A model, using a term of applied stress normalized by Young’s modulus, was proposed to correlate the rupture times at various temperatures and could explain the rupture time data reasonably well for the given two lead-free solders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. ABTEW and G. SELVADURAY, Mater. Sci. Eng. R 27 (2000) 95.

    Article  Google Scholar 

  2. K. ZENG and K. N. TU, ibid. R 38 (2002) 55.

    Article  CAS  Google Scholar 

  3. J. H. LAU, in “Solder Joint Reliability-Theory and Applications” (Van Nostrand Reinhold, New York, 1991).

    Google Scholar 

  4. M. OHRING, in “Reliability and Failure of Electronic Materials and Devices” (Academic Press, San Diego, CA, USA, 1998).

    Google Scholar 

  5. M. MCCORMACK, S. JIN, G. W. KAMMLOTT and H. S. CHEN, Appl. Phys. Lett. 63 (1993) 15.

    Article  CAS  Google Scholar 

  6. V. I. IGOSHEV, J. I. KLEIMAN, D. SHANGGUAN, S. WONG and U. MICHON, J. Electron. Mater. 29 (2000) 1356.

    CAS  Google Scholar 

  7. V. I. IGOSHEV, J. I. KLEIMAN, D. SHANGGUAN, C. LOCK and S. WONG, ibid. 27 (1998) 1367.

    CAS  Google Scholar 

  8. W. J. PLUMBRIDGE, C. R. GAGG and S. PETERS, ibid. 30 (2001) 1178.

    CAS  Google Scholar 

  9. C. M. L. WU, D. Q. YU, C. M. T. LAW and L. WANG, J. Mater. Res. 17 (2002) 3146.

    CAS  Google Scholar 

  10. F. GUO, J. P. LUCAS and K. N. SUBRAMANIAN, J. Mater. Sci. 12 (2001) 27.

    CAS  Google Scholar 

  11. J. YU, D. K. JOO and S. W. SHIN, Acta Mater. 50 (2002) 4315.

    Article  CAS  Google Scholar 

  12. D. K. JOO, J. YU and S. W. SHIN, J. Electron. Mater. 32 (2003) 541.

    CAS  Google Scholar 

  13. F. GUO, S. CHOI, K. N. SUBRAMANIAN, T. R. BIELER, J. P. LUCAS, A. ACHARI and M. PARUCHURI, Mater. Sci. Eng. A 351 (2003) 190.

    Article  Google Scholar 

  14. K. WU, N. WADE, J. CUI and K. MIYAHARA, J. Electron. Mater. 32 (2003) 5.

    CAS  Google Scholar 

  15. H. G. SONG, J. W. MORRIS, JR. and F. HUA, Mater. Trans. 43 (2002) 1874.

    Google Scholar 

  16. M. L. HUANG and L. WANG, J. Mater. Res. 17 (2002) 2897.

    CAS  Google Scholar 

  17. N. WADE, K. WU, J. KUNII, S. YAMADA and K. MIYAHARA, J. Electron. Mater. 30 (2001) 1228.

    CAS  Google Scholar 

  18. H. MAVOORI, J. CHIN, S. VAYNMAN, B. MORAN, L. KEER and M. FINE, ibid. 26 (1997) 783.

    CAS  Google Scholar 

  19. M. E. LOOMANS and M. E. FINE, Metall. Mater. Trans. A. 31A (2000) 1155.

    CAS  Google Scholar 

  20. K. W. MOON, W. J. BOETTINGER, U. R. KATTNER, F. S. BIANCANIELLO and C. A. HANDWERKER, J. Electron. Mater. 29 (2000) 1122.

    CAS  Google Scholar 

  21. A. K. MUKHERJEE, J. E. BIRD and J. E. DORN, Trans. ASM 62 (1969) 155.

    CAS  Google Scholar 

  22. H. J. FROST and M. F. ASHBY, in “Deformation-Mechanism Maps” (Pergamon Press, New York, 1982).

    Google Scholar 

  23. Z. MEI and J. W. MORRIS, JR.}, J. Electron. Mater. 21 (1992) 599.

    CAS  Google Scholar 

  24. S. W. SHIN and J. YU, Jpn. Soc. Appl. Phys. 42 (2003) 1368.

    Article  CAS  Google Scholar 

  25. Z. MEI, D. GRIVAS, M. C. SHINE and J. W. MORRIS, JR.}, J. Electron. Mater. 19 (1990) 1273.

    CAS  Google Scholar 

  26. N. WADE, T. AKUZAWA, S. YAMADA, D. SUGIYAMA, I. KIM and K. MIYAHARA, ibid. 28 (1999) 1286.

    CAS  Google Scholar 

  27. F. C. MONKMAN and N. J. GRANT, Proc. ASTM 56 (1956) 593.

    Google Scholar 

  28. F. R. LARSON and J. MILLER, Trans. ASME 74 (1952) 765.

    Google Scholar 

  29. J. CADEK, in “Creep in Metallic Materials” (Elsevier Science Publishers, Amsterdam, The Netherlands, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Kuang Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CK., Chu, DY. Creep rupture of lead-free Sn-3.5Ag and Sn-3.5Ag-0.5Cu solders. J Mater Sci: Mater Electron 16, 355–365 (2005). https://doi.org/10.1007/s10854-005-1147-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-005-1147-5

Keywords

Navigation