Skip to main content

Advertisement

Log in

Eco-friendly, mechanically strong, and thermally stable mica/wood electrical insulating film

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Plastic films with good robustness and electrical insulation are extensively applied in electrical equipment and electronic devices. However, the reliance on plastics for industrial production and the non-degradability of plastic waste have posed a threat to the environment and human health. Here, a green, sustainable, high-performance composite film has been synthesized to replace petroleum-based plastics by using resource-rich natural wood and mineral synthetic mica as raw materials. The wood scaffold with lamellar structure and oriented channels was obtained through wood nanotechnology, and then the mica sheets were fixed in it by impregnation with mica solution and subsequent mechanical pressing. The resulting Mica/wood films (MWF) exhibited excellent tensile properties (tensile strength of 124.57 MPa and modulus of 11.4 GPa) when the mica addition content was 7.09 wt%, which was better than most plastic films. Meanwhile, the breakdown voltage and thermal stability of MWF were improved with the addition of mica. Additionally, MWF exhibited much lower environmental impact than petrochemical plastic because it easily biodegraded in the soil. This work provided feasible strategy in fabricating environmentally friendly, high-performance bio-based insulating membranes for advanced electrical devices and electronics, demonstrating great potential for addressing resource scarcity and plastic pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data and code availability

Not Applicable.

References

  1. Yim C, Passi V, Lemme MC et al (2018) npj 2D Mater Appl 2:5–11. https://doi.org/10.1038/s41699-018-0051-9

    Article  CAS  Google Scholar 

  2. He Z, Gao B, Li T et al (2019) ACS Sustain Chem Eng 7:1745–1752. https://doi.org/10.1021/acssuschemeng.8b05606

    Article  CAS  Google Scholar 

  3. Levchenko I, Xu S, Teel G, Mariotti D, Walker MLR, Keidar M (2018) Nat Commun 9:879–885. https://doi.org/10.1038/s41467-017-02269-7

    Article  CAS  Google Scholar 

  4. Zhou L, Yang Z, Luo W et al (2016) ACS Appl Mater Interfaces 8:28838–28843. https://doi.org/10.1021/acsami.6b09471

    Article  CAS  Google Scholar 

  5. Liu Y, Chen W, Liu H et al (2023) Polym Degrad Stab 209:110264–110271. https://doi.org/10.1016/j.polymdegradstab.2023.110264

    Article  CAS  Google Scholar 

  6. Zhang J-W, Cao D-K, Cui Y-C, Wang F, Putson C, Song C (2019) J Clea Prod 208:333–339. https://doi.org/10.1016/j.jclepro.2018.10.057

    Article  CAS  Google Scholar 

  7. Hui H, Li Y, Feng Y et al (2022) Polym Adv Technol 33:1685–1694. https://doi.org/10.1002/pat.5631

    Article  CAS  Google Scholar 

  8. Jiang B, Chen C, Liang Z et al (2020) Adv Func Mater 30:1906307–1906317. https://doi.org/10.1002/adfm.201906307

    Article  CAS  Google Scholar 

  9. Lebreton LCM, van der Zwet J, Damsteeg J-W, Slat B, Andrady A, Reisser J (2017) Nat Commun 8:15611–15620. https://doi.org/10.1038/ncomms15611

    Article  CAS  Google Scholar 

  10. Walker S, Rothman R (2020) J Clean Prod 261:121158–121172. https://doi.org/10.1016/j.jclepro.2020.121158

    Article  CAS  Google Scholar 

  11. Dong T, Chen W, Cai C et al (2023) Chem Eng J 451:138970–138980. https://doi.org/10.1016/j.cej.2022.138970

    Article  CAS  Google Scholar 

  12. Geyer R, Jambeck JR, Law KL (2017) Sci Adv 3:e1700782–1700786. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  Google Scholar 

  13. Zhu Z, Wang W, Liu Z et al (2022) Ind Crops Prod 185:115106–115116. https://doi.org/10.1016/j.indcrop.2022.115106

    Article  CAS  Google Scholar 

  14. Guan Q-F, Yang H-B, Han Z-M et al (2021) Nano Lett 21:8999–9004. https://doi.org/10.1021/acs.nanolett.1c02315

    Article  CAS  Google Scholar 

  15. Lim C, Yusoff S, Ng CG, Lim PE, Ching YC (2021) J Environ Chem Eng 9:105895–105903. https://doi.org/10.1016/j.jece.2021.105895

    Article  CAS  Google Scholar 

  16. Mohammed A, Gaduan A, Chaitram P, Pooran A, Lee K-Y, Ward K (2023) Food Hydrocoll 135:108192–107203. https://doi.org/10.1016/j.foodhyd.2022.108192

    Article  CAS  Google Scholar 

  17. Chen C, Wu Q, Wan Z et al (2022) Chem Eng J 442:136173–136182. https://doi.org/10.1016/j.cej.2022.136173

    Article  CAS  Google Scholar 

  18. Zhou Y, He Y, Lin X, Feng Y, Liu M (2022) ACS Appl Mater Interfaces 14:46980–46993. https://doi.org/10.1021/acsami.2c12764

    Article  CAS  Google Scholar 

  19. Kohman GT (1939) Ind Eng Chem 31:807–817. https://doi.org/10.1021/ie50355a005

    Article  CAS  Google Scholar 

  20. Hu F, Zeng J, Li J et al (2022) ACS Appl Mater Interfaces 14:14640–14653. https://doi.org/10.1021/acsami.2c01597

    Article  CAS  Google Scholar 

  21. Le Bras D, Strømme M, Mihranyan A (2015) J Phys Chem B 119:5911–5917. https://doi.org/10.1021/acs.jpcb.5b00715

    Article  CAS  Google Scholar 

  22. Kadumudi FB, Trifol J, Jahanshahi M et al (2020) ACS Appl Mater Interfaces 12:48027–48039. https://doi.org/10.1021/acsami.0c15326

    Article  CAS  Google Scholar 

  23. Guan Q-F, Yang H-B, Han Z-M, Ling Z-C, Yu S-H (2020) Nat Commun 11:5401–5407. https://doi.org/10.1038/s41467-020-19174-1

    Article  CAS  Google Scholar 

  24. Zinge C, Kandasubramanian B (2020) Eur Polym J133:109758–109776. https://doi.org/10.1016/j.eurpolymj.2020.109758

    Article  CAS  Google Scholar 

  25. Sun H, Ji T, Bi H et al (2021) Adv Sustain Sys 5:2100040–2100047. https://doi.org/10.1002/adsu.202100040

    Article  CAS  Google Scholar 

  26. Dai J, Fu K, Gong Y et al (2019) ACS Mater Lett 1:354–361. https://doi.org/10.1021/acsmaterialslett.9b00189

    Article  CAS  Google Scholar 

  27. Fu Q, Medina L, Li Y, Carosio F, Hajian A, Berglund LA (2017) ACS Appl Mater Interfaces 9:36154–36163. https://doi.org/10.1021/acsami.7b10008

    Article  CAS  Google Scholar 

  28. Fu Q, Chen Y, Sorieul M (2020) ACS Nano 14:3528–3538. https://doi.org/10.1021/acsnano.9b09817

    Article  CAS  Google Scholar 

  29. Wang M, Li R, Chen G et al (2019) ACS Appl Mater Interfaces 11:14313–14321. https://doi.org/10.1021/acsami.9b00728

    Article  CAS  Google Scholar 

  30. Sun H, Ji T, Zhou X et al (2021) Mater Chem Front 5:7903–7909. https://doi.org/10.1039/D1QM00973G

    Article  CAS  Google Scholar 

  31. Chen C, Berglund L, Burgert I, Hu L (2021) Adv Mater 33:2006207–2006209. https://doi.org/10.1002/adma.202006207

    Article  CAS  Google Scholar 

  32. Jiang F, Li T, Li Y et al (2018) Adv Mater 30:1703453–1703491. https://doi.org/10.1002/adma.201703453

    Article  CAS  Google Scholar 

  33. Ji T, Sun H, Cui B et al (2022) Adv Sustain Sys 6:2100382–2100390. https://doi.org/10.1002/adsu.202100382

    Article  CAS  Google Scholar 

  34. Sun, H, Bi, H, Lin, X et al (2020), Polymers 12:165–176. https://doi.org/10.3390/polym12010165

    Article  CAS  Google Scholar 

  35. Feng Y, He Z, Yang Z, Tang W, Chi Q, Chen Q (2022) J Appl Polym Sci 139:e53034–53043. https://doi.org/10.1002/app.53034

    Article  CAS  Google Scholar 

  36. Song J, Chen C, Zhu S et al (2018) Nature 554:224–228. https://doi.org/10.1038/nature25476

    Article  CAS  Google Scholar 

  37. Lipton J, Weng GM, Alhabeb M et al (2019) Nanoscale 11:20295–20300. https://doi.org/10.1039/c9nr06015d

    Article  CAS  Google Scholar 

  38. Zhao Y, Jiang C, Xiong Y et al (2023) J Mater Sci: Mater Electron 34:330–341. https://doi.org/10.1007/s10854-022-09761-x

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Undergraduate Training Programs for Innovations (202110225038). The authors are also thankful to Shiyanjia Laboratory (www.shiyanjia.com) for the breakdown voltage tests.

Author information

Authors and Affiliations

Authors

Contributions

TJ contributed to conceptualization, formal analysis, data curation, visualization, writing—original draft, writing—review and editing. KL contributed to methodology, software, investigation, data curation. SC contributed to visualization, investigation. BC contributed to conceptualization, writing—review and editing. MX contributed to conceptualization, resources, funding acquisition, supervision, writing—review and editing.

Corresponding author

Correspondence to Min Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2300 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, T., Li, K., Chen, S. et al. Eco-friendly, mechanically strong, and thermally stable mica/wood electrical insulating film. J Mater Sci 58, 9967–9977 (2023). https://doi.org/10.1007/s10853-023-08531-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08531-2

Navigation