Skip to main content
Log in

Study on Raman multi-peak fitting and structure quantitative analysis of PAN-based carbon fibers

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To ascertain the best multi-peak fitting model for first- and second-order Raman spectral of both high-strength carbon fibers (T series) and high-strength and high-modulus carbon fibers (MJ series), three statistical evaluation methods including R2, Akaike information criterion (AIC) and Bayesian information criterion (BIC) values were calculated. And by establishing the relationship between spectral parameters and mechanical properties, the inconsistencies of fitting results under different peak fitting models were discussed. Results indicated that all fitting models of MJ series showed higher statistical consistency compared with that of T series. A five-peak model consisting of D, G, A, I and D′ peak and a four-peak model including 2I, G′, D+G and 2D′ peak with Voigtian function was recommended for first- and second-order Raman spectral of MJ series. But for T series, the above five-peak model with Lorentzian function might be recommended for first-order spectral. Importantly, for MJ series, it was found that the relationship between ID/IG value and tensile strength or modulus was almost the same as that between full width at half maximum (FWHM) of G′ peak and tensile strength or modulus. It was considered that the second-order spectral parameter of FWHM of G′ peak was helpful to supplement the first-order spectral parameter of ID/IG value, both of which were related to disorder features of carbon fibers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Data availability

All data used during the study are available from the corresponding author by request.

References

  1. Gong Y, Du R, Mo G, Xing XQ, Lu CX, Wu ZH (2018) Nanostructural hereditability in polyacrylonitrile based fibers studied by small angle X-ray scattering. Polymer 153:485–497. https://doi.org/10.1016/j.polymer.2018.08.034

    Article  CAS  Google Scholar 

  2. Li XY, Tian F, Gao XP, Bian FG, Li XH, Wang J (2017) WAXD/SAXS study and 2D fitting (SAXS) of the microstructural evolution of PAN-based carbon fibers during the pre-oxidation and carbonization process. New Carbon Mater 32(2):130–137. https://doi.org/10.1016/s1872-5805(17)60110-0

    Article  CAS  Google Scholar 

  3. Ouyang Q, Liu DP, Jiang XF, Ma HB, Chen YS, He L (2018) Quantitative structure-property relationships of polyacrylonitrile-based graphite fibers revealed by laser confocal Raman spectroscopy. Spectrosc Lett 51(2):89–95. https://doi.org/10.1080/00387010.2018.1425304

    Article  CAS  Google Scholar 

  4. Tanaka F, Okabe T, Okuda H, Kinloch IA, Young RJ (2014) Factors controlling the strength of carbon fibres in tension. Compos A 57:88–94. https://doi.org/10.1016/j.compositesa.2013.11.007

    Article  CAS  Google Scholar 

  5. Tanaka F, Okabe T, Okuda H, Ise M, Kinloch IA, Mori T, Young RJ (2013) The effect of nanostructure upon the deformation micromechanics of carbon fibres. Carbon 52:372–378. https://doi.org/10.1016/j.carbon.2012.09.047

    Article  CAS  Google Scholar 

  6. Chabalala VP, Wagner N, Potgieter-Vermaak S (2011) Investigation into the evolution of char structure using Raman spectroscopy in conjunction with coal petrography; Part 1. Fuel Process Technol 92(4):750–756. https://doi.org/10.1016/j.fuproc.2010.09.006

    Article  CAS  Google Scholar 

  7. Smith MW, Dallmeyer I, Johnson TJ, Brauer CS, McEwen J-S, Espinal JF, Garcia-Perez M (2016) Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles. Carbon 100:678–692. https://doi.org/10.1016/j.carbon.2016.01.031

    Article  CAS  Google Scholar 

  8. Liu XH, Zheng Y, Liu ZH, Ding HR, Huang XH, Zheng CG (2015) Study on the evolution of the char structure during hydrogasification process using Raman spectroscopy. Fuel 157:97–106. https://doi.org/10.1016/j.fuel.2015.04.025

    Article  CAS  Google Scholar 

  9. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43(8):1731–1742. https://doi.org/10.1016/j.carbon.2005.02.018

    Article  CAS  Google Scholar 

  10. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  Google Scholar 

  11. Dresselhaus MS, Jorio A, Saito R (2010) Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu Rev Condens Matter Phys 1:89–108. https://doi.org/10.1146/annurev-conmatphys-070909-103919

    Article  CAS  Google Scholar 

  12. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8(4):235–246. https://doi.org/10.1038/nnano.2013.46

    Article  CAS  Google Scholar 

  13. Chernyak SA, Ivanov AS, Maslakov KI, Egorov AV, Shen Z, Savilov SS, Lunin VV (2017) Oxidation, defunctionalization and catalyst life cycle of carbon nanotubes: a Raman spectroscopy view. PCCP 19(3):2276–2285. https://doi.org/10.1039/c6cp04657f

    Article  CAS  Google Scholar 

  14. Brubaker ZE, Langford JJ, Kapsimalis RJ, Niedziela JL (2021) Quantitative analysis of Raman spectral parameters for carbon fibers: practical considerations and connection to mechanical properties. J Mater Sci 56(27):15087–15121. https://doi.org/10.1007/s10853-021-06225-1

    Article  CAS  Google Scholar 

  15. Sun ZL, Lu YG, Wang RQ, Yang CL (2020) Analysis of carbon fiber structure based on dynamic laser Raman spectroscopy. J Appl Polym Sci 138(16):50247. https://doi.org/10.1002/app.50247

    Article  CAS  Google Scholar 

  16. Qian X, Wang XF, Zhong JJ, Zhi JH, Heng FF, Zhang YG, Song SL (2019) Effect of fiber microstructure studied by Raman spectroscopy upon the mechanical properties of carbon fibers. J Raman Spectrosc 50(5):665–673. https://doi.org/10.1002/jrs.5569

    Article  CAS  Google Scholar 

  17. Okuda H, Young RJ, Wolverson D, Tanaka F, Yamamoto G, Okabe T (2018) Investigating nanostructures in carbon fibres using Raman spectroscopy. Carbon 130:178–184. https://doi.org/10.1016/j.carbon.2017.12.108

    Article  CAS  Google Scholar 

  18. Cai JY, McDonnell J, Brackley C, O’Brien L, Church JS, Millington K, Smith S, Phair-Sorensen N (2016) Polyacrylonitrile-based precursors and carbon fibers derived from advanced RAFT technology and conventional methods—the 1st comparative study. Mater Today Commun 9:22–29. https://doi.org/10.1016/j.mtcomm.2016.09.001

    Article  CAS  Google Scholar 

  19. Li DH, Lu CX, Wu GP, Yang Y, An F, Feng ZH, Li XT (2014) Structural heterogeneity and its influence on the tensile fracture of PAN-based carbon fibers. RSC Adv 4(105):60648–60651. https://doi.org/10.1039/c4ra08530b

    Article  CAS  Google Scholar 

  20. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130. https://doi.org/10.1063/1.1674108

    Article  CAS  Google Scholar 

  21. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  22. Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B 64(7):1–13. https://doi.org/10.1103/PhysRevB.64.075414

    Article  CAS  Google Scholar 

  23. Li DF, Wang HJ, Wang XK (2007) Raman spectra of PAN-based carbon fibers during graphitization. Spectrosc Spectral Anal 27(11):2249–2253

    CAS  Google Scholar 

  24. Dennison JR, Holtz M, Swain G (1996) Raman spectroscopy of carbon materials. Spectroscopy 11(8):38–46

    CAS  Google Scholar 

  25. Jawhari T, Roig A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33(11):1561–1565. https://doi.org/10.1016/0008-6223(95)00117-v

    Article  CAS  Google Scholar 

  26. Lee S, Kim T-R, Ogale AA, Kim M-S (2007) Surface and structure modification of carbon nanofibers. Synth Met 157(16–17):644–650. https://doi.org/10.1016/j.synthmet.2007.07.005

    Article  CAS  Google Scholar 

  27. Cuesta A, Dhamelincourt P, Laureyns J, Martinezalonso A, Tascon JMD (1994) Raman microprobe studies on carbon materials. Carbon 32(8):1523–1532. https://doi.org/10.1016/0008-6223(94)90148-1

    Article  CAS  Google Scholar 

  28. Yang FH, Hu GM, He HY, Yi MZ, Ge YC, Ran LP, Peng K (2019) Effect of amorphous carbon on the tensile behavior of polyacrylonitrile (PAN)-based carbon fibers. J Mater Sci 54(11):8800–8813. https://doi.org/10.1007/s10853-018-03256-z

    Article  CAS  Google Scholar 

  29. Dippel B, Jander H, Heintzenberg J (1999) NIR FT Raman spectroscopic study of flame soot. PCCP 1(20):4707–4712. https://doi.org/10.1039/a904529e

    Article  CAS  Google Scholar 

  30. Lee Y-J (2004) The second order Raman spectroscopy in carbon crystallinity. J Nucl Mater 325(2–3):174–179. https://doi.org/10.1016/j.jnucmat.2003.12.005

    Article  CAS  Google Scholar 

  31. Hishiyama Y, Irumano H, Kaburagi Y, Soneda Y (2001) Structure, Raman scattering, and transport properties of boron-doped graphite. Phys Rev B 63(24):245406. https://doi.org/10.1103/PhysRevB.63.245406

    Article  CAS  Google Scholar 

  32. Wu JX, Xu H, Zhang J (2014) Raman spectroscopy of graphene. Acta Chim Sinica. https://doi.org/10.6023/a13090936

    Article  Google Scholar 

  33. Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS, Casiraghi C (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12(8):3925–3930. https://doi.org/10.1021/nl300901a

    Article  CAS  Google Scholar 

  34. Li B, Zhou L, Wu D, Peng HL, Yan K, Zhou Y, Liu ZF (2011) Photochemical chlorination of graphene. ACS Nano 5(7):5957–5961. https://doi.org/10.1021/nn201731t

    Article  CAS  Google Scholar 

  35. Wang YY, Ni ZH, Shen ZX, Wang HM, Wu YH (2008) Interference enhancement of Raman signal of graphene. Appl Phys Lett 92(4):043121. https://doi.org/10.1063/1.2838745

    Article  CAS  Google Scholar 

  36. Chieu TC, Dresselhaus MS, Endo M (1982) Raman studies of benzene-derived graphite fibers. Phys Rev B 26(10):5867–5877. https://doi.org/10.1103/PhysRevB.26.5867

    Article  CAS  Google Scholar 

  37. Hu JL, Huang JH, Chih Y, Chuang CC, Chen JP, Cheng SH, Horng JL (2009) Effects of thermal treatments on the supercapacitive performances of PAN-based carbon fiber electrodes. Diamond Relat Mater 18(2–3):511–515. https://doi.org/10.1016/j.diamond.2008.10.025

    Article  CAS  Google Scholar 

  38. Frank O, Tsoukleri G, Riaz I, Papagelis K, Parthenios J, Ferrari AC, Geim AK, Novoselov KS, Galiotis C (2011) Development of a universal stress sensor for graphene and carbon fibres. Nat Commun. https://doi.org/10.1038/ncomms1247

    Article  Google Scholar 

  39. Okuda H, Young RJ, Tanaka F, Watanabe J, Okabe T (2016) Tensile failure phenomena in carbon fibres. Carbon 107:474–481. https://doi.org/10.1016/j.carbon.2016.06.037

    Article  CAS  Google Scholar 

  40. Melanitis N, Tetlow PL, Galiotis C (1996) Characterization of PAN-based carbon fibres with laser Raman spectroscopy. 1. Effect of processing variables on Raman band profiles. J Mater Sci 31(4):851–860. https://doi.org/10.1007/bf00352882

    Article  CAS  Google Scholar 

  41. Li CG, Xian GJ (2019) Experimental investigation of the microstructures and tensile properties of polyacrylonitrile-based carbon fibers exposed to elevated temperatures in air. J Eng Fibers Fabr. https://doi.org/10.1177/1558925019850010

    Article  Google Scholar 

  42. Mallet-Ladeira P, Puech P, Toulouse C, Cazayous M, Ratel-Ramond N, Weisbecker P, Vignoles GL, Monthioux M (2014) A Raman study to obtain crystallite size of carbon materials: a better alternative to the Tuinstra-Koenig law. Carbon 80:629–639. https://doi.org/10.1016/j.carbon.2014.09.006

    Article  CAS  Google Scholar 

  43. Yuan XY, Mayanovic RA (2017) An empirical study on raman peak fitting and its application to raman quantitative research. Appl Spectrosc 71(10):2325–2338. https://doi.org/10.1177/0003702817721527

    Article  CAS  Google Scholar 

  44. Mallet-Ladeira P, Puech P, Weisbecker P, Vignoles GL, Monthioux M (2014) Behavior of Raman D band for pyrocarbons with crystallite size in the 2–5 nm range. Appl Phys A-Mater Sci Process 114(3):759–763. https://doi.org/10.1007/s00339-013-7671-x

    Article  CAS  Google Scholar 

  45. Hao JJ, Lu CX, Li DH (2020) Characterization of the microstructure of carbon fibers: Raman spectroscopy. Chem Ind Eng Prog 39(2):227–233. https://doi.org/10.16085/j.issn.1000-6613.2020-0507

    Article  Google Scholar 

  46. Jx LI, Huang QZ, Tian NC, Tu LJ, Liu HB, Cao H (2021) Discussion on methods of identification natural amorphous graphite and anthracite. Carbon Tech 6(40):64–67. https://doi.org/10.14078/j.cnki.1001-3741.2021.06.013

    Article  Google Scholar 

  47. Zhong JJ, Qian X, Zhang YG, Wang XF, Li DH, Song SL (2018) Structure contrast of T800 high-strength and intermediatemodulus carbon fibers with different diameters. China Synth Fiber Ind 41(5):5–8

    Google Scholar 

  48. Geng GL, Ma XF, Geng HB, Wu YY (2018) Effect of thermal cycles on the thermal expansion behavior of T700 carbon fiber bundles. Chem Res Chin Univ 34(3):451–456. https://doi.org/10.1007/s40242-018-7430-9

    Article  CAS  Google Scholar 

  49. Gutmann P, Moosburger-Will J, Kurt S, Xu Y, Horn S (2019) Carbonization of polyacrylonitrile-based fibers under defined tensile load: Influence on shrinkage behavior, microstructure, and mechanical properties. Polym Degrad Stab 163:174–184. https://doi.org/10.1016/j.polymdegradstab.2019.03.007

    Article  CAS  Google Scholar 

  50. Herdman JD, Connelly BC, Smooke MD, Long MB, Miller JH (2011) A comparison of Raman signatures and laser-induced incandescence with direct numerical simulation of soot growth in non-premixed ethylene/air flames. Carbon 49(15):5298–5311. https://doi.org/10.1016/j.carbon.2011.07.050

    Article  CAS  Google Scholar 

  51. Vautard F, Ozcan S, Paulauskas F, Spruiell JE, Meyer H, Lance MJ (2012) Influence of the carbon fiber surface microstructure on the surface chemistry generated by a thermo-chemical surface treatment. Appl Surf Sci 261:473–480. https://doi.org/10.1016/j.apsusc.2012.08.038

    Article  CAS  Google Scholar 

  52. Lu JS, Li WW, Kang HL, Feng LB, Xu J, Liu RG (2020) Microstructure and properties of polyacrylonitrile based carbon fibers. Polym Test 81:9. https://doi.org/10.1016/j.polymertesting.2019.106267

    Article  CAS  Google Scholar 

  53. Li WW, Kang HL, Xu J, Liu RG (2017) Effects of ultra-high temperature treatment on the microstructure of carbon fibers. Chin J Polym Sci 35(6):764–772. https://doi.org/10.1007/s10118-017-1922-9

    Article  CAS  Google Scholar 

  54. Yang FH, Liu W, Yi MZ, Ran LP, Ge YC, Peng K (2020) Effect of high temperature treatment on the microstructure and elastoplastic properties of polyacrylonitrile-based carbon fibers. Carbon 158:783–794. https://doi.org/10.1016/j.carbon.2019.11.055

    Article  CAS  Google Scholar 

  55. Xiao H, Lu YG, Wang MH, Qin XY, Zhao WZ, Luan J (2013) Effect of gamma-irradiation on the mechanical properties of polyacrylonitrile-based carbon fiber. Carbon 52:427–439. https://doi.org/10.1016/j.carbon.2012.09.054

    Article  CAS  Google Scholar 

  56. Wu S, Liu YQ, Ge YC, Ran LP, Peng K, Yi MZ (2016) Surface structures of PAN-based carbon fibers and their influences on the interface formation and mechanical properties of carbon-carbon composites. Compos A 90:480–488. https://doi.org/10.1016/j.compositesa.2016.08.023

    Article  CAS  Google Scholar 

  57. Beyssac O, Rouzaud JN, Goffe B, Brunet F, Chopin C (2002) Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study. Contrib Mineral Petrol 143(1):19–31. https://doi.org/10.1007/s00410-001-0324-7

    Article  CAS  Google Scholar 

  58. Yao LB, Yang WM, Li SY, Sha Y, Tan J, An Y, Li HY (2017) Graphitization of PAN-based carbon fibers by CO2 laser irradiation. Carbon Letters 24(1):97–102. https://doi.org/10.5714/cl.2017.24.097

    Article  Google Scholar 

  59. Cao WW, Zhu B, Jing M, Wang CG (2008) Raman spectra of PAN-based carbon fibers during surface treatment. Spectrosc Spectral Anal 28(12):2885–2889. https://doi.org/10.3964/j.issn.1000-0593(2008)12-2885-05

    Article  CAS  Google Scholar 

  60. Gordon RG (1965) Molecular motion in infrared and Raman spectra. J Chem Phys 43(4):1307–1312. https://doi.org/10.1063/1.1696920

    Article  CAS  Google Scholar 

  61. Portet S (2020) A primer on model selection using the Akaike Information Criterion. Infect Dis Model 5:111–128. https://doi.org/10.1016/j.idm.2019.12.010

    Article  Google Scholar 

  62. Wagenmakers EJ (2003) Model selection and multimodel inference: a practical information-theoretic approach. J Math Psychol 47(5–6):580–586. https://doi.org/10.1016/s0022-2496(03)00064-6

    Article  Google Scholar 

  63. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65(1):23–35. https://doi.org/10.1007/s00265-010-1029-6

    Article  Google Scholar 

  64. Burnham KP, Anderson DR (2004) Multimodel inference—understanding AIC and BIC in model selection. Sociol Methods Res 33(2):261–304. https://doi.org/10.1177/0049124104268644

    Article  Google Scholar 

  65. Wasserman L (2000) Bayesian model selection and model averaging. J Math Psychol 44(1):92–107. https://doi.org/10.1006/jmps.1999.1278

    Article  CAS  Google Scholar 

  66. Xia F, Zhang J, Zhang H, Lu JF (2020) Fine recognition and prediction of resident load pattern based on BIC criterion and weighted Pearson distance. J Electron Measur Instrum 34(11):33–42

    Google Scholar 

  67. Wagenmakers EJ, Farrell S (2004) AIC model selection using Akaike weights. Psychon Bull Rev 11(1):192–196. https://doi.org/10.3758/bf03206482

    Article  Google Scholar 

  68. Wu ZX, Ji H, Yu C, Zhou C (2018) EPR-RCGA-based modelling of compression index and RMSE-AIC-BIC-based model selection for Chinese marine clays and their engineering application. J Zhejiang Univ-Sci A 19(3):211–224. https://doi.org/10.1631/jzus.A1700089

    Article  CAS  Google Scholar 

  69. Zhong YJ, Bian WF (2017) Effect of crystallites structure of PAN-based carbon fibers on tensile strength. J Mater Eng 45(12):37–42

    Google Scholar 

  70. Wu T, Lu CX, Sun TQ, Li YH, Yuan SX, Li DH, Wang GB, Ren XD (2022) New discovery on the relationship between microstructure and tensile strength of PAN-based carbon fibers. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2021.111584

    Article  Google Scholar 

  71. Li WW, Kang HL, Xu J, Liu RG (2018) Microstructures of high-strength high-modulus carbon fibers and high-modulus carbon fibers. Acta Polym Sin 3:380–388. https://doi.org/10.11777/j.issn1000-3304.2017.17102

    Article  CAS  Google Scholar 

  72. Qian X, Zhi JH, Chen LQ, Zhong JJ, Wang XF, Zhang YG, Song SL (2018) Evolution of microstructure and electrical property in the conversion of high strength carbon fiber to high modulus and ultrahigh modulus carbon fiber. Compos A 112:111–118. https://doi.org/10.1016/j.compositesa.2018.05.030

    Article  CAS  Google Scholar 

  73. Liu MH, Dong ZR, Xin GF, Sun YG, Dai Y, Qu RH, Wei F (2017) Discrimination Method of Raman Spectral Peaks Based on Voigt Function Fitting. Chin J Lasers 44(5):1–6. https://doi.org/10.3788/CJL201744.0511003

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the supports from Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province.

Author information

Authors and Affiliations

Authors

Contributions

Ting Wu: experiment, data-processing, Writing—original draft. Chunxiang Lu: conceptualization/theoretical guidance, Writing—Reviewing. Tongqing Sun: conceptualization/theoretical guidance, Writing—Reviewing. Yonghong Li: sample preparation and screening.

Corresponding authors

Correspondence to Chunxiang Lu or Tongqing Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 16, 17, 18, 19, 20, 21, 22, 23, 24 and 25.

Figure 16
figure 16

Fit components for all fitting model applied to the First-order Raman spectrum of T300B sample without pretreatment

Figure 17
figure 17

Fit components for all fitting model applied to the First-order Raman spectrum of GCF-5 sample without pretreatment

Figure 18
figure 18

Fit model selection based on a 1 − R2, b ∆AIC and c ∆BIC value of T series carbon fibers without pretreatment

Figure 19
figure 19

Fit model selection based on a 1 − R2, b ∆AIC and c ∆BIC value of MJ series carbon fibers without pretreatment

Figure 20
figure 20

Plots of ID/IG value versus a tensile strength and b tensile modulus of T series carbon fibers without pretreatment

Figure 21
figure 21

Plots of ID/IG value versus a tensile strength and b tensile modulus of MJ series carbon fibers without pretreatment

Figure 22
figure 22

Fit components for three fitting functions applied to the second-order Raman spectrum of T300B and GCF-5 samples without pretreatment

Figure 23
figure 23

Fit function selection based on 1 − R2, ∆AIC and ∆BIC value of T and MJ series carbon fibers without pretreatment

Figure 24
figure 24

Plots of FWHM value for G′ peak versus tensile modulus of a T series and b MJ series carbon fibers without pretreatment

Figure 25
figure 25

Plots of FWHM value for G′ peak versus tensile strength of a T series and b MJ series carbon fibers without pretreatment

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Lu, C., Sun, T. et al. Study on Raman multi-peak fitting and structure quantitative analysis of PAN-based carbon fibers. J Mater Sci 57, 15385–15412 (2022). https://doi.org/10.1007/s10853-022-07589-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07589-8

Navigation