Skip to main content
Log in

Review: adsorbents for the recovery of precious metals from wastewater

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents an up-to-date overview of the various advanced materials as adsorbent used in the recovery of precious metals from wastewater. The precious metals concentrated here include gold, silver, palladium and platinum, whose recovery is interesting mainly due to their vast industrial applications and high market prices. Among various methods, adsorption approach is one of the most efficient techniques for the recovery of precious metal ions from aqueous solutions. There are a number of absorbents such as carbon materials, metal-organic frameworks (MOFs), biopolymers, silicas, resins, and transition-metal sulfides, which have been developed and explored to efficient recovery of precious metal ions from wastewater. Thermodynamics and kinetics were further discussed for exploring the adsorption mechanism of precious metal ions in these advanced materials. It was found that the adsorption process of these metals is mostly spontaneous (ΔG < 0) and endothermic (ΔH > 0) in nature. This review would contribute to the development of advanced materials for recovery of precious metals from secondary sources such as wastewater.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma S, Wang Y, Jiang K, Han X (2015) Decoratable hybrid-film-patch stabilized Pickering emulsions and their catalytic applications. Nano Res 8:2603–2610. https://doi.org/10.1007/s12274-015-0765-3

    Article  CAS  Google Scholar 

  2. Wang L, Zeng Z, Ma C et al (2017) Plating precious metals on nonprecious metal nanoparticles for sustainable electrocatalysts. Nano Lett 17:3391–3395. https://doi.org/10.1021/acs.nanolett.7b00046

    Article  CAS  Google Scholar 

  3. Zeng X, Mathews JA, Li J (2018) Urban mining of E-waste is becoming more cost-effective than virgin mining. Environ Sci Technol 52:4835–4841. https://doi.org/10.1021/acs.est.7b04909

    Article  CAS  Google Scholar 

  4. Huang SY, Ganesan P, Popov BN (2012) Electrocatalytic activity and stability of Titania-supported platinum-palladium electrocatalysts for polymer electrolyte membrane fuel cell. ACS Catal 2:825–831. https://doi.org/10.1021/cs300088n

    Article  CAS  Google Scholar 

  5. Gao F, Yuan Q, Cai P et al (2019) Au clusters treat rheumatoid arthritis with uniquely reversing cartilage/bone destruction. Adv Sci 6:1801671. https://doi.org/10.1002/advs.201801671

    Article  CAS  Google Scholar 

  6. Ding Y, Zhang S, Liu B et al (2019) Recovery of precious metals from electronic waste and spent catalysts: a review. Resour Conserv Recycl 141:284–298. https://doi.org/10.1016/j.resconrec.2018.10.041

    Article  Google Scholar 

  7. Syed S (2012) Recovery of gold from secondary sources—a review. Hydrometallurgy 115–116:30–51. https://doi.org/10.1016/j.hydromet.2011.12.012

    Article  CAS  Google Scholar 

  8. Wang H, Ren ZJ (2014) Bioelectrochemical metal recovery from wastewater: A review. Water Res 66:219–232. https://doi.org/10.1016/j.watres.2014.08.013

    Article  CAS  Google Scholar 

  9. Chang SH (2021) Gold (III) recovery from aqueous solutions by raw and modified chitosan: a review. Carbohydr Polym 256:117423. https://doi.org/10.1016/j.carbpol.2020.117423

    Article  CAS  Google Scholar 

  10. Gupta B, Singh I (2013) Extraction and separation of platinum, palladium and rhodium using Cyanex 923 and their recovery from real samples. Hydrometallurgy 134–135:11–18. https://doi.org/10.1016/j.hydromet.2013.01.001

    Article  CAS  Google Scholar 

  11. Mooiman MB, Miller JD (1991) The chemistry of gold solvent extraction from alkaline cyanide solution by solvating extractants. Hydrometallurgy 27:29–46. https://doi.org/10.1016/0304-386X(91)90076-X

    Article  CAS  Google Scholar 

  12. Batnasan A, Haga K, Huang HH et al (2019) High-pressure oxidative leaching and iodide leaching followed by selective precipitation for recovery of base and precious metals from waste printed circuit boards ash. Metals 9:363. https://doi.org/10.3390/met9030363

    Article  CAS  Google Scholar 

  13. Nikoloski AN, Ang KL, Li D (2015) Recovery of platinum, palladium and rhodium from acidic chloride leach solution using ion exchange resins. Hydrometallurgy 152:20–32. https://doi.org/10.1016/j.hydromet.2014.12.006

    Article  CAS  Google Scholar 

  14. Das N (2010) Recovery of precious metals through biosorption—a review. Hydrometallurgy 103:180–189. https://doi.org/10.1016/j.hydromet.2010.03.016

    Article  CAS  Google Scholar 

  15. Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan: a review. J Mol Liq 214:175–191. https://doi.org/10.1016/j.molliq.2015.12.013

    Article  CAS  Google Scholar 

  16. Soleimani M, Kaghazchi T (2008) Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones – An agricultural waste. Bioresour Technol 99:5374–5383. https://doi.org/10.1016/j.biortech.2007.11.021

    Article  CAS  Google Scholar 

  17. Chand R, Watari T, Inoue K et al (2009) Selective adsorption of precious metals from hydrochloric acid solutions using porous carbon prepared from barley straw and rice husk. Miner Eng 22:1277–1282. https://doi.org/10.1016/j.mineng.2009.07.007

    Article  CAS  Google Scholar 

  18. Wu F, Zhao T, Yao Y et al (2020) Recycling supercapacitor activated carbons for adsorption of silver (I) and chromium (VI) ions from aqueous solutions. Chemosphere 238:124638. https://doi.org/10.1016/j.chemosphere.2019.124638

    Article  CAS  Google Scholar 

  19. Wojnicki M, Socha RP, Pędzich Z et al (2018) Palladium (II) chloride complex ion recovery from aqueous solutions using adsorption on activated carbon. J Chem Eng Data 63:702–711. https://doi.org/10.1021/acs.jced.7b00885

    Article  CAS  Google Scholar 

  20. Navarro P, Vargas C, Alonso M, Alguacil FJ (2007) Towards a more environmentally friendly process for gold: models on gold adsorption onto activated carbon from ammoniacal thiosulfate solutions. Desalination 211:58–63. https://doi.org/10.1016/j.desal.2006.03.590

    Article  CAS  Google Scholar 

  21. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013. https://doi.org/10.1021/es801777n

    Article  CAS  Google Scholar 

  22. Wang L, Tian C, Mu G et al (2012) Magnetic nanoparticles/graphitic carbon nanostructures composites: Excellent magnetic separable adsorbents for precious metals from aqueous solutions. Mater Res Bull 47:646–654. https://doi.org/10.1016/j.materresbull.2011.12.030

    Article  CAS  Google Scholar 

  23. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  24. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539. https://doi.org/10.1126/science.1222453

    Article  CAS  Google Scholar 

  25. Yu F, Wu Y, Ma J, Zhang C (2013) Adsorption of lead on multi-walled carbon nanotubes with different outer diameters and oxygen contents: Kinetics, isotherms and thermodynamics. J Environ Sci 25:195–203. https://doi.org/10.1016/S1001-0742(12)60023-0

    Article  CAS  Google Scholar 

  26. Iqbal A, Jan MR, Shah J, Rashid B (2020) Dispersive solid phase extraction of precious metal ions from electronic wastes using magnetic multiwalled carbon nanotubes composite. Miner Eng 154:106414. https://doi.org/10.1016/j.mineng.2020.106414

    Article  CAS  Google Scholar 

  27. Xu T, Qu R, Zhang Y et al (2021) Preparation of bifunctional polysilsesquioxane/carbon nanotube magnetic composites and their adsorption properties for Au (III). Chem Eng J 410:128225. https://doi.org/10.1016/j.cej.2020.128225

    Article  CAS  Google Scholar 

  28. Yang ST, Chang Y, Wang H et al (2010) Folding/aggregation of graphene oxide and its application in Cu2+ removal. J Colloid Interface Sci 351:122–127. https://doi.org/10.1016/j.jcis.2010.07.042

    Article  CAS  Google Scholar 

  29. Machida M, Mochimaru T, Tatsumoto H (2006) Lead (II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution. Carbon 44:2681–2688. https://doi.org/10.1016/j.carbon.2006.04.003

    Article  CAS  Google Scholar 

  30. Liu L, Liu S, Zhang Q et al (2013) Adsorption of Au (III), Pd (II), and Pt (IV) from Aqueous solution onto graphene oxide. J Chem Eng Data 58:209–216. https://doi.org/10.1021/je300551c

    Article  CAS  Google Scholar 

  31. Chen JH, Xing HT, Guo HX et al (2014) Investigation on the adsorption properties of Cr (VI) ions on a novel graphene oxide (GO) based composite adsorbent. J Mater Chem A 2:12561–12570. https://doi.org/10.1039/C4TA02004A

    Article  CAS  Google Scholar 

  32. Bowen HJM (1970) Absorption by polyurethane foams; new method of separation. J Chem Soc Inorg Phys Theor. https://doi.org/10.1039/j19700001082

    Article  Google Scholar 

  33. Xue D, Li T, Liu Y et al (2019) Selective adsorption and recovery of precious metal ions from water and metallurgical slag by polymer brush graphene–polyurethane composite. React Funct Polym 136:138–152. https://doi.org/10.1016/j.reactfunctpolym.2018.12.026

    Article  CAS  Google Scholar 

  34. Yoo J, Kim HS, Park SY et al (2020) Instantaneous integration of magnetite nanoparticles on graphene oxide assisted by ultrasound for efficient heavy metal ion retrieval. Ultrason Sonochem 64:104962. https://doi.org/10.1016/j.ultsonch.2020.104962

    Article  CAS  Google Scholar 

  35. Chen G, Wang Y, Weng H et al (2019) Selective separation of Pd (II) on pyridine-functionalized graphene oxide prepared by radiation-induced simultaneous grafting polymerization and reduction. ACS Appl Mater Interf 11:24560–24570. https://doi.org/10.1021/acsami.9b06162

    Article  CAS  Google Scholar 

  36. Xu GR, An ZH, Xu K et al (2021) Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: the cutting-edge study on designs, synthesis, and applications. Coord Chem Rev 427:213554. https://doi.org/10.1016/j.ccr.2020.213554

    Article  CAS  Google Scholar 

  37. Palomba JM, Credille CV, Kalaj M et al (2018) High-throughput screening of solid-state catalysts for nerve agent degradation. Chem Commun 54:5768–5771. https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  38. Shearer GC, Chavan S, Bordiga S et al (2016) Defect engineering: tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis. Chem Mater 28:3749–3761. https://doi.org/10.1021/acs.chemmater.6b00602

    Article  CAS  Google Scholar 

  39. Lin S, Zhao Y, Bediako JK et al (2019) Structure-controlled recovery of palladium (II) from acidic aqueous solution using metal-organic frameworks of MOF-802, UiO-66 and MOF-808. Chem Eng J 362:280–286. https://doi.org/10.1016/j.cej.2019.01.044

    Article  CAS  Google Scholar 

  40. Li H, Feng X, Guo Y et al (2015) A malonitrile-functionalized metal-organic framework for hydrogen sulfide detection and selective amino acid molecular recognition. Sci Rep 4:4366. https://doi.org/10.1038/srep04366

    Article  CAS  Google Scholar 

  41. Hu C, Xu W, Mo X et al (2018) Efficient adsorption toward precious metal from aqueous solution by zeolitic imidazolate framework-8. Adsorption 24:733–744. https://doi.org/10.1007/s10450-018-9981-y

    Article  CAS  Google Scholar 

  42. Lin S, Reddy DHK, Bediako JK et al (2017) Effective adsorption of Pd (II), Pt (IV) and Au (III) by Zr (IV)-based metal-organic frameworks from strongly acidic solution. J Mater Chem A 5:13557–13564. https://doi.org/10.1039/c7ta02518a

    Article  CAS  Google Scholar 

  43. Lin S, Bediako JK, Cho CW et al (2018) Selective adsorption of Pd (II) over interfering metal ions (Co (II), Ni (II), Pt (IV)) from acidic aqueous phase by metal-organic frameworks. Chem Eng J 345:337–344. https://doi.org/10.1016/j.cej.2018.03.173

    Article  CAS  Google Scholar 

  44. Chang Z, Li F, Qi X et al (2020) Selective and efficient adsorption of Au (III) in aqueous solution by Zr-based metal-organic frameworks (MOFs): An unconventional way for gold recycling. J Hazard Mater 391:122175. https://doi.org/10.1016/j.jhazmat.2020.122175

    Article  CAS  Google Scholar 

  45. Zhou S, Hu C, Xu W et al (2020) Fast recovery of Au (III) and Ag (I) via amine-modified zeolitic imidazolate framework-8. Appl Organomet Chem. https://doi.org/10.1002/aoc.5541

    Article  Google Scholar 

  46. Lim CR, Lin S, Yun YS (2020) Highly efficient and acid-resistant metal-organic frameworks of MIL-101(Cr)-NH2 for Pd (II) and Pt (IV) recovery from acidic solutions: adsorption experiments, spectroscopic analyses, and theoretical computations. J Hazard Mater 387:121689. https://doi.org/10.1016/j.jhazmat.2019.121689

    Article  CAS  Google Scholar 

  47. Huang Z, Wang C, Zhao J et al (2020) Adsorption behavior of Pd (II) ions from aqueous solution onto pyromellitic acid modified-UiO-66-NH2. Arab J Chem 13:7007–7019. https://doi.org/10.1016/j.arabjc.2020.07.007

    Article  CAS  Google Scholar 

  48. Fotoohi B, Mercier L (2015) Some insights into the chemistry of gold adsorption by thiol and amine functionalized mesoporous silica in simulated thiosulfate system. Hydrometallurgy 156:28–39. https://doi.org/10.1016/j.hydromet.2015.05.010

    Article  CAS  Google Scholar 

  49. Wu C, Zhu X, Wang Z et al (2017) Specific recovery and in situ reduction of precious metals from waste to create MOF composites with immobilized nanoclusters. Ind Eng Chem Res 56:13975–13982. https://doi.org/10.1021/acs.iecr.7b02839

    Article  CAS  Google Scholar 

  50. Wang Z, Zhang B, Ye C, Chen L (2018) Recovery of Au (III) from leach solutions using thiourea functionalized zeolitic imidazolate frameworks (TU*ZIF-8). Hydrometallurgy 180:262–270. https://doi.org/10.1016/j.hydromet.2018.08.002

    Article  CAS  Google Scholar 

  51. Wang C, Lin G, Zhao J et al (2020) Highly selective recovery of Au (III) from wastewater by thioctic acid modified Zr-MOF: experiment and DFT calculation. Chem Eng J 380:122511. https://doi.org/10.1016/j.cej.2019.122511

    Article  CAS  Google Scholar 

  52. Wang C, Lin G, Zhao J et al (2020) Enhancing Au (III) adsorption capacity and selectivity via engineering MOF with mercapto-1,3,4-thiadiazole. Chem Eng J 388:124221. https://doi.org/10.1016/j.cej.2020.124221

    Article  CAS  Google Scholar 

  53. Zhao M, Huang Z, Wang S et al (2020) Experimental and DFT study on the selective adsorption mechanism of Au (III) using amidinothiourea-functionalized UiO-66-NH2. Microporous Mesoporous Mater 294:109905. https://doi.org/10.1016/j.micromeso.2019.109905

    Article  CAS  Google Scholar 

  54. Hu C, Xu W, Li H et al (2019) Highly efficient adsorption of Au (III) from Water by a novel metal-organic framework constructed with sulfur-containing ligands and Zn (II). Ind Eng Chem Res 58:17972–17979. https://doi.org/10.1021/acs.iecr.9b03433

    Article  CAS  Google Scholar 

  55. Xu W, Mo X, Zhou S et al (2019) Highly efficient and selective recovery of Au (III) by a new metal-organic polymer. J Hazard Mater 380:120844. https://doi.org/10.1016/j.jhazmat.2019.120844

    Article  CAS  Google Scholar 

  56. Bhargava G, Ramanarayanan TA, Bernasek SL (2010) Imidazole−Fe interaction in an aqueous chloride medium: effect of cathodic reduction of the native oxide. Langmuir 26:215–219. https://doi.org/10.1021/la9020355

    Article  CAS  Google Scholar 

  57. Zhou S, Mo X, Zhu W et al (2020) Selective adsorption of Au (III) with ultra-fast kinetics by a new metal-organic polymer. J Mol Liq 319:114125. https://doi.org/10.1016/j.molliq.2020.114125

    Article  CAS  Google Scholar 

  58. Tang J, Zhao J, Wang S et al (2021) Pre-modification strategy to prepare a novel Zr-based MOF for selective adsorption of Palladium (II) from solution. Chem Eng J 407:127223. https://doi.org/10.1016/j.cej.2020.127223

    Article  CAS  Google Scholar 

  59. Huang Z, Zhao M, Wang C et al (2020) Selective removal mechanism of the novel Zr-based metal organic framework adsorbents for gold ions from aqueous solutions. Chem Eng J 384:123343. https://doi.org/10.1016/j.cej.2019.123343

    Article  CAS  Google Scholar 

  60. ALOthman Z (2012) A review: fundamental aspects of silicate mesoporous materials. Materials 5:2874–2902. https://doi.org/10.3390/ma5122874

    Article  CAS  Google Scholar 

  61. Zhao J, Wang C, Wang S et al (2019) Augmenting the adsorption parameters of palladium onto pyromellitic acid-functionalized nanosilicas from aqueous solution. Colloids Surf Physicochem Eng Asp 578:123581. https://doi.org/10.1016/j.colsurfa.2019.123581

    Article  CAS  Google Scholar 

  62. Bai F, Ye G, Chen G et al (2013) Highly selective recovery of palladium by a new silica-based adsorbent functionalized with macrocyclic ligand. Sep Purif Technol 106:38–46. https://doi.org/10.1016/j.seppur.2012.12.021

    Article  CAS  Google Scholar 

  63. Saman N, Ahmad Kamal NA, Lye JWP, Mat H (2020) Synthesis and characterization of CTAB-silica nanocapsules and its adsorption behavior towards Pd (II) ions in aqueous solution. Adv Powder Technol 31:3205–3214. https://doi.org/10.1016/j.apt.2020.06.007

    Article  CAS  Google Scholar 

  64. Zheng H, Hu D, Zhang L et al (2012) Thiol functionalized mesoporous silicas for selective adsorption of precious metals. Miner Eng 35:20–26. https://doi.org/10.1016/j.mineng.2012.04.006

    Article  CAS  Google Scholar 

  65. Liu W, Yin P, Liu X et al (2013) Thermodynamics, kinetics, and isotherms studies for gold (III) adsorption using silica functionalized by diethylenetriaminemethylenephosphonic acid. Chem Eng Res Des 91:2748–2758. https://doi.org/10.1016/j.cherd.2013.05.003

    Article  CAS  Google Scholar 

  66. Fu L, Zhang L, Wang S et al (2017) Selective recovery of Au (III) from aqueous solutions by nanosilica grafted with cationic polymer: Kinetics and isotherm. J Taiwan Inst Chem Eng 80:342–348. https://doi.org/10.1016/j.jtice.2017.07.020

    Article  CAS  Google Scholar 

  67. Fu L, Zhang L, Wang S et al (2017) Selective adsorption of Ag+ by silica nanoparticles modified with 3-Amino-5-mercapto-1,2,4-triazole from aqueous solutions. J Mol Liq 241:292–300. https://doi.org/10.1016/j.molliq.2017.06.028

    Article  CAS  Google Scholar 

  68. Xiong C, Li Y, Wang S, Zhou Y (2018) Functionalization of nanosilica via guanidinium ionic liquid for the recovery of gold ions from aqueous solutions. J Mol Liq 256:183–190. https://doi.org/10.1016/j.molliq.2018.02.036

    Article  CAS  Google Scholar 

  69. Zhang B, Fu L, Wang S, Zhang L (2018) Adsorption of palladium (II) from aqueous solution using nanosilica modified with imidazoline groups. Mater Chem Phys 214:533–539. https://doi.org/10.1016/j.matchemphys.2018.04.120

    Article  CAS  Google Scholar 

  70. Fakhre NA, Ibrahim BM (2018) The use of new chemically modified cellulose for heavy metal ion adsorption. J Hazard Mater 343:324–331. https://doi.org/10.1016/j.jhazmat.2017.08.043

    Article  CAS  Google Scholar 

  71. Monier M, Akl MA, Ali WM (2014) Modification and characterization of cellulose cotton fibers for fast extraction of some precious metal ions. Int J Biol Macromol 66:125–134. https://doi.org/10.1016/j.ijbiomac.2014.01.068

    Article  CAS  Google Scholar 

  72. Hashem MA, Elnagar MM, Kenawy IM, Ismail MA (2020) Synthesis and application of hydrazono-imidazoline modified cellulose for selective separation of precious metals from geological samples. Carbohydr Polym 237:116177. https://doi.org/10.1016/j.carbpol.2020.116177

    Article  CAS  Google Scholar 

  73. Biswas FB, Rahman IMM, Nakakubo K et al (2020) Highly selective and straightforward recovery of gold and platinum from acidic waste effluents using cellulose-based bio-adsorbent. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.124569

    Article  Google Scholar 

  74. Biswas FB, Rahman IMM, Nakakubo K et al (2021) Selective recovery of silver and palladium from acidic waste solutions using dithiocarbamate-functionalized cellulose. Chem Eng J 407:127225. https://doi.org/10.1016/j.cej.2020.127225

    Article  CAS  Google Scholar 

  75. Zhao M, Li X, Huang Z et al (2021) Facile cross-link method to synthesize chitosan-based adsorbent with superior selectivity toward gold ions: Batch and column studies. Int J Biol Macromol 172:210–222. https://doi.org/10.1016/j.ijbiomac.2021.01.046

    Article  CAS  Google Scholar 

  76. Nagireddi S, Katiyar V, Uppaluri R (2017) Pd (II) adsorption characteristics of glutaraldehyde cross-linked chitosan copolymer resin. Int J Biol Macromol 94:72–84. https://doi.org/10.1016/j.ijbiomac.2016.09.088

    Article  CAS  Google Scholar 

  77. Matusiak J, Grządka E, Bastrzyk A (2018) Stability, adsorption and electrokinetic properties of the chitosan/silica system. Colloids Surf Physicochem Eng Asp 554:245–252. https://doi.org/10.1016/j.colsurfa.2018.06.056

    Article  CAS  Google Scholar 

  78. Mohammadzadeh Pakdel P, Peighambardoust SJ (2018) Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr Polym 201:264–279. https://doi.org/10.1016/j.carbpol.2018.08.070

    Article  CAS  Google Scholar 

  79. Zhao M, Zhao J, Huang Z et al (2019) One pot preparation of magnetic chitosan-cystamine composites for selective recovery of Au (III) from the aqueous solution. Int J Biol Macromol 137:721–731. https://doi.org/10.1016/j.ijbiomac.2019.07.022

    Article  CAS  Google Scholar 

  80. M.E.H. A, Mbianda XY, Mulaba-Bafubiandi AF, Marjanovic L, (2013) Selective extraction of gold (III) from metal chloride mixtures using ethylenediamine N-(2-(1-imidazolyl)ethyl) chitosan ion-imprinted polymer. Hydrometallurgy 140:1–13. https://doi.org/10.1016/j.hydromet.2013.08.004

    Article  CAS  Google Scholar 

  81. Pei Y, Wu X, Xu G et al (2017) Tannin-immobilized cellulose microspheres as effective adsorbents for removing cationic dye (Methylene Blue) from aqueous solution: Tannin-immobilized cellulose microspheres as effective adsorbents. J Chem Technol Biotechnol 92:1276–1284. https://doi.org/10.1002/jctb.5121

    Article  CAS  Google Scholar 

  82. Gurung M, Adhikari BB, Alam S et al (2013) Persimmon tannin-based new sorption material for resource recycling and recovery of precious metals. Chem Eng J 228:405–414. https://doi.org/10.1016/j.cej.2013.05.011

    Article  CAS  Google Scholar 

  83. Gurung M, Adhikari BB, Morisada S et al (2013) N-aminoguanidine modified persimmon tannin: A new sustainable material for selective adsorption, preconcentration and recovery of precious metals from acidic chloride solution. Bioresour Technol 129:108–117. https://doi.org/10.1016/j.biortech.2012.11.012

    Article  CAS  Google Scholar 

  84. Liu F, Wang S, Chen S (2020) Adsorption behavior of Au (III) and Pd (II) on persimmon tannin functionalized viscose fiber and the mechanism. Int J Biol Macromol 152:1242–1251. https://doi.org/10.1016/j.ijbiomac.2019.10.221

    Article  CAS  Google Scholar 

  85. Zhang S, Dang J, Lin J et al (2021) Selective enrichment and separation of Ag (I) from electronic waste leachate by chemically modified persimmon tannin. J Environ Chem Eng 9:104994. https://doi.org/10.1016/j.jece.2020.104994

    Article  CAS  Google Scholar 

  86. Wei W, Qiu Y, Zhao Y et al (2021) Development of melamine-impregnated alginate capsule for selective recovery of Pd (II) from a binary metal solution. J Clean Prod 288:125648. https://doi.org/10.1016/j.jclepro.2020.125648

    Article  CAS  Google Scholar 

  87. Gao X, Liu J, Li M et al (2020) Mechanistic study of selective adsorption and reduction of Au (III) to gold nanoparticles by ion-imprinted porous alginate microspheres. Chem Eng J 385:123897. https://doi.org/10.1016/j.cej.2019.123897

    Article  CAS  Google Scholar 

  88. Amphlett JTM, Ogden MD, Foster RI et al (2018) Polyamine functionalised ion exchange resins: synthesis, characterisation and uranyl uptake. Chem Eng J 334:1361–1370. https://doi.org/10.1016/j.cej.2017.11.040

    Article  CAS  Google Scholar 

  89. Xiong C, Zhou S, Liu X et al (2014) 2-aminothiazole functionalized polystyrene for selective removal of Au (III) in aqueous solutions. Ind Eng Chem Res 53:2441–2448. https://doi.org/10.1021/ie403502r

    Article  CAS  Google Scholar 

  90. Liu F, Zhou L, Wang W et al (2020) Adsorptive recovery of Au (III) from aqueous solution using crosslinked polyethyleneimine resins. Chemosphere 241:125122. https://doi.org/10.1016/j.chemosphere.2019.125122

    Article  CAS  Google Scholar 

  91. Xiang Y, Chen X, Cao C et al (2020) High performance and selectivity recovery of Au (III) from waste solution using the RFU resin. React Funct Polym 154:104637. https://doi.org/10.1016/j.reactfunctpolym.2020.104637

    Article  CAS  Google Scholar 

  92. Wang L, Wang K, Huang R et al (2020) Hierarchically flower-like WS2 microcrystals for capture and recovery of Au (III), Ag (I) and Pd (II). Chemosphere 252:126578. https://doi.org/10.1016/j.chemosphere.2020.126578

    Article  CAS  Google Scholar 

  93. Tong S, Deng H, Wang L et al (2018) Multi-functional nanohybrid of ultrathin molybdenum disulfide nanosheets decorated with cerium oxide nanoparticles for preferential uptake of lead (II) ions. Chem Eng J 335:22–31. https://doi.org/10.1016/j.cej.2017.10.056

    Article  CAS  Google Scholar 

  94. Zeng M, Yang B, Yan H et al (2020) Efficient recovery of Ag (I) from aqueous solution using MoS2 nanosheets: adsorption study and DFT calculation. Chem Phys Lett 757:137865. https://doi.org/10.1016/j.cplett.2020.137865

    Article  CAS  Google Scholar 

  95. Feng B, Yao C, Chen S et al (2018) Highly efficient and selective recovery of Au (III) from a complex system by molybdenum disulfide nanoflakes. Chem Eng J 350:692–702. https://doi.org/10.1016/j.cej.2018.05.130

    Article  CAS  Google Scholar 

  96. Zhao M, Huang Z, Wang S, Zhang L (2020) Ultrahigh efficient and selective adsorption of Au (III) from water by novel Chitosan-coated MoS2 biosorbents: performance and mechanisms. Chem Eng J 401:126006. https://doi.org/10.1016/j.cej.2020.126006

    Article  CAS  Google Scholar 

  97. Yao C, Chen S, Wang L et al (2019) Low cost and rapid fabrication of copper sulfides nanoparticles for selective and efficient capture of noble metal ions. Chem Eng J 373:1168–1178. https://doi.org/10.1016/j.cej.2019.05.070

    Article  CAS  Google Scholar 

  98. Hasanpour M, Hatami M (2020) Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: a review study. Adv Colloid Interface Sci 284:102247. https://doi.org/10.1016/j.cis.2020.102247

    Article  CAS  Google Scholar 

  99. Sherlala AIA, Raman AAA, Bello MM, Asghar A (2018) A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 193:1004–1017. https://doi.org/10.1016/j.chemosphere.2017.11.093

    Article  CAS  Google Scholar 

  100. Oba SN, Ighalo JO, Aniagor CO, Igwegbe CA (2021) Removal of ibuprofen from aqueous media by adsorption: a comprehensive review. Sci Total Environ 780:146608. https://doi.org/10.1016/j.scitotenv.2021.146608

    Article  CAS  Google Scholar 

  101. Khambhaty Y, Mody K, Basha S (2012) Efficient removal of Brilliant Blue G (BBG) from aqueous solutions by marine Aspergillus wentii: Kinetics, equilibrium and process design. Ecol Eng 41:74–83. https://doi.org/10.1016/j.ecoleng.2012.01.002

    Article  Google Scholar 

  102. Lin S, Bediako JK, Song M-H et al (2019) Effective recovery of Pt (IV) from acidic solution by a defective metal-organic frameworks using central composite design for synthesis. ACS Sustain Chem Eng 7:7510–7518. https://doi.org/10.1021/acssuschemeng.8b04637

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from National key research and development program (No. 2018YFC1902506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiamei Yu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Wu, Y., Wang, Z. et al. Review: adsorbents for the recovery of precious metals from wastewater. J Mater Sci 57, 10886–10911 (2022). https://doi.org/10.1007/s10853-022-07320-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07320-7

Navigation