Skip to main content

Advertisement

Log in

Structure and electrical transport properties of electrospun carbon nanofibers/carbon nanotubes 3D hierarchical nanocomposites: effect of the CCVD synthesis conditions

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aims of this work were analysis of the effect of the synthesis conditions on the microstructure, structure, and electrical properties of electrospun carbon nanofibers/disordered carbon nanotubes (eCNF/dCNT) nanocomposites, and analysis of the correlations between these properties. The nanocomposites were obtained in the combined process involving electrospinning of precursor nanofibers and catalytic chemical vapor deposition (CCVD) synthesis of carbon nanotubes directly on the surface of nanofibers. The evaluation of microstructural-structural characteristics was conducted using microscopic, spectroscopic, and diffractometric methods. Electrical properties were investigated through measurements of temperature-dependent conductivity, and interpreted in terms of Mott's variable range hopping model. The study showed that the control of the temperature and duration of CCVD synthesis of CNT enables tailoring of the microstructure, defect density, and electrical transport in nanocomposites. Increasing the temperature up to 850 °C led to extension of the planar π-conjugated structure of nanoprotrusions, which resulted in facilitated conductivity of nanocomposites. The prolongation of the CCVD growth significantly increased the amount, and length of nanoprotrusions, which resulted in further enhancement of conductivity. The analysis of Raman spectra suggests the existence of an interesting correlation between the half-width of the G-band and T0 parameter describing the electrical properties. The study provides a solid background and route map for the synthesis of eCNF/CNT nanocomposites in applications such as energy storage and conversion, electrochemistry, nanoelectronics, semiconductors etc.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zander NE (2013) Hierarchically structured electrospun fibers. Polymers (Basel) 5:19–44. https://doi.org/10.3390/polym5010019

    Article  CAS  Google Scholar 

  2. Gubernat M, Zambrzycki M, Fraczek-Szczypta A, Blazewicz S (2020) Structural and microstructural study of novel stacked toroidal carbon nanotubes. Micron 130:102816. https://doi.org/10.1016/j.micron.2019.102816

    Article  CAS  Google Scholar 

  3. Zambrzycki M, Łoś S, Fraczek-Szczypta A (2021) Structure and electrical transport properties of carbon nanofibres/carbon nanotubes 3D hierarchical nanocomposites: impact of the concentration of acetylacetonate catalyst. Ceram Int 47:4020–4033. https://doi.org/10.1016/j.ceramint.2020.09.269

    Article  CAS  Google Scholar 

  4. Zhang H, Liu Y, Tao J, Liu Y, Bao R, Li F, Yi J (2021) Direct synthesis of carbon nanotube-graphene hybrids on copper powders and the mechanical properties of corresponding composites. Mater Sci Eng A 825:141861

    Article  CAS  Google Scholar 

  5. Hou H, Reneker DH (2004) Carbon nanotubes on carbon nanofibers: a novel structure based on electrospun polymer nanofibers. Adv Mater 16:69–73. https://doi.org/10.1002/adma.200306205

    Article  CAS  Google Scholar 

  6. Lai C, Guo Q, Wu XF, Reneker DH, Hou H (2008) Growth of carbon nanostructures on carbonized electrospun nanofibers with palladium nanoparticles. Nanotechnology 19(19):195303

    Article  Google Scholar 

  7. Alali KT, Liu J, Liu Q et al (2019) Grown carbon nanotubes on electrospun carbon nanofibers as a 3d carbon nanomaterial for high energy storage performance. ChemSelect 4:5437–5458. https://doi.org/10.1002/slct.201803828

    Article  CAS  Google Scholar 

  8. Zambrzycki M, Fraczek-Szczypta A (2020) Study on the synthesis and properties of hierarchically structured electrospun/vapour-grown carbon nanofibres nanocomposites. J Ind Eng Chem 86:100–112. https://doi.org/10.1016/j.jiec.2020.02.017

    Article  CAS  Google Scholar 

  9. Wang C, Zong L, Pan Y et al (2021) Preparation and characterization of branch-like heteroatoms-doped Ni@C nanofibers for high-performance microwave absorption with thin thickness. Compos Part B Eng 223:109114. https://doi.org/10.1016/j.compositesb.2021.109114

    Article  CAS  Google Scholar 

  10. Aftab F, Duran H, Kirchhoff K et al (2020) A facile synthesis of FeCo nanoparticles encapsulated in hierarchical n-doped carbon nanotube/nanofiber hybrids for overall water splitting. ChemCatChem 12:932–943. https://doi.org/10.1002/cctc.201901601

    Article  CAS  Google Scholar 

  11. Wang F, Feng X, Wang N et al (2021) In-situ grown nickel-cobalt bimetallic nanowire arrays for efficient hydrogen evolution reaction. Coll Surf A Physicochem Eng Asp 615:126205. https://doi.org/10.1016/j.colsurfa.2021.126205

    Article  CAS  Google Scholar 

  12. van Helden P, Prinsloo F, van den Berg JA et al (2020) Cobalt-nickel bimetallic fischer-tropsch catalysts: a combined theoretical and experimental approach. Catal Today 342:88–98. https://doi.org/10.1016/j.cattod.2019.03.001

    Article  CAS  Google Scholar 

  13. Long F, Zhang Z, Wang J et al (2015) Cobalt-nickel bimetallic nanoparticles decorated graphene sensitized imprinted electrochemical sensor for determination of octylphenol. Electrochim Acta 168:337–345. https://doi.org/10.1016/j.electacta.2015.04.054

    Article  CAS  Google Scholar 

  14. Barakat NA, Motlak M, Lim BH, El-Newehy MH, Al-Deyab SS (2014) Effective and stable CoNi alloy-loaded graphene for ethanol oxidation in alkaline medium. J Electrochem Soc 161(12):1194–1201

    Article  Google Scholar 

  15. Aftab F, Tanveer S, Rehman SU et al (2020) Encapsulation of Fe/Fe3O4 in carbon nanotubes grown over carbon nanofibers for high performance supercapacitor electrodes. Synth Met 269:116575. https://doi.org/10.1016/j.synthmet.2020.116575

    Article  CAS  Google Scholar 

  16. Wang T, Song D, Zhao H et al (2015) Facilitated transport channels in carbon nanotube/carbon nanofiber hierarchical composites decorated with manganese dioxide for flexible supercapacitors. J Pow Sour 274:709–717. https://doi.org/10.1016/j.jpowsour.2014.10.102

    Article  CAS  Google Scholar 

  17. Qiu Y, Li G, Hou Y et al (2015) Vertically aligned carbon nanotubes on carbon nanofibers: a hierarchical three-dimensional carbon nanostructure for high-energy flexible supercapacitors. Chem Mater 27:1194–1200. https://doi.org/10.1021/cm503784x

    Article  CAS  Google Scholar 

  18. Miao F, Shao C, Li X et al (2016) Electrospun carbon nanofibers/carbon nanotubes/polyaniline ternary composites with enhanced electrochemical performance for flexible solid-state supercapacitors. ACS Sustain Chem Eng 4:1689–1696. https://doi.org/10.1021/acssuschemeng.5b01631

    Article  CAS  Google Scholar 

  19. Chen Y, Li X, Park K et al (2013) Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J Am Chem Soc 135:16280–16283. https://doi.org/10.1021/ja408421n

    Article  CAS  Google Scholar 

  20. Motlak M, Barakat NAM, Akhtar MS et al (2015) High performance of NiCo nanoparticles-doped carbon nano fibers as counter electrode for dye-sensitized solar cells. Electrochim Acta 160:1–6. https://doi.org/10.1016/j.electacta.2015.02.063

    Article  CAS  Google Scholar 

  21. Fontana M, Ramos R, Morin A, Dijon J (2021) Direct growth of carbon nanotubes forests on carbon fibers to replace microporous layers in proton exchange membrane fuel cells. Carbon N Y 172:762–771. https://doi.org/10.1016/j.carbon.2020.10.049

    Article  CAS  Google Scholar 

  22. Kuzmenko V, Saleem AM, Staaf H, Haque M, Bhaskar A, Flygare M, Enoksson P (2016) Hierarchical cellulose-derived CNF/CNT composites for electrostatic energy storage. J Micromec Microeng 26(12):124001

    Article  Google Scholar 

  23. Kshetri T, Thanh TD, Singh SB et al (2018) Hierarchical material of carbon nanotubes grown on carbon nanofibers for high performance electrochemical capacitor. Chem Eng J 345:39–47. https://doi.org/10.1016/j.cej.2018.03.143

    Article  CAS  Google Scholar 

  24. El Mel AA, Achour A, Xu W, Choi CH, Gautron E, Angleraud B, Tessier PY (2011) Hierarchical carbon nanostructure design: ultra-long carbon nanofibers decorated with carbon nanotubes. Nanotechnology 22(43):435302

    Article  Google Scholar 

  25. Zambrzycki M, Tomala J, Fraczek-Szczypta A (2018) Electrical and mechanical properties of granular-fibrous carbon-carbon composites with recycled carbon fibres. Ceram Int 44:19282–19289. https://doi.org/10.1016/j.ceramint.2018.07.154

    Article  CAS  Google Scholar 

  26. Zhan D, Yan J, Lai L et al (2012) Engineering the electronic structure of graphene. Adv Mater 24:4055–4069. https://doi.org/10.1002/adma.201200011

    Article  CAS  Google Scholar 

  27. Jin Y, Zheng Y, Podkolzin SG, Lee W (2020) Band gap of reduced graphene oxide tuned by controlling functional groups. J Mater Chem C 8:4885–4894. https://doi.org/10.1039/c9tc07063j

    Article  CAS  Google Scholar 

  28. Lefebvre J, Ding J, Li Z et al (2017) High-purity semiconducting single-walled carbon nanotubes: a key enabling material in emerging electronics. Acc Chem Res 50:2479–2486. https://doi.org/10.1021/acs.accounts.7b00234

    Article  CAS  Google Scholar 

  29. Stavarache I, Lepadatu A-M, Teodorescu V et al (2011) Electrical behavior of multi-walled carbon nanotube network embedded in amorphous silicon nitride. Nanoscale Res Lett 6:88. https://doi.org/10.1186/1556-276x-6-88

    Article  Google Scholar 

  30. Joung D, Khondaker SI (2012) Efros-shklovskii variable range hopping in reduced graphene oxide sheets of varying carbon sp2 fraction. Phys Rev B 86:29–32

    Article  Google Scholar 

  31. Wang DP, Feldman DE, Perkins BR et al (2007) Hopping conduction in disordered carbon nanotubes. Solid State Commun 142:287–291. https://doi.org/10.1016/j.ssc.2007.02.028

    Article  CAS  Google Scholar 

  32. Mott NF (1968) Conduction in glasses containing transition metal ions. J Non Cryst Sol 1:1–17. https://doi.org/10.1016/0022-3093(68)90002-1

    Article  CAS  Google Scholar 

  33. Najeh I, El Mir L (2020) Hopping charge transport of the porous carbon. Mater Today Proc 43:3345–3353. https://doi.org/10.1016/j.matpr.2019.12.017

    Article  CAS  Google Scholar 

  34. Bhatia R, Kumari K, Rani R et al (2018) A critical review of experimental results on low temperature charge transport in carbon nanotubes based composites. Rev Phys 3:15–25. https://doi.org/10.1016/j.revip.2017.12.001

    Article  Google Scholar 

  35. Xavier PAF, Benoy MD, Stephen SK, Varghese T (2021) Enhanced electrical properties of polyaniline carbon nanotube composites: analysis of temperature dependence of electrical conductivity using variable range hopping and fluctuation induced tunneling models. J Solid State Chem 300:122232. https://doi.org/10.1016/j.jssc.2021.122232

    Article  CAS  Google Scholar 

  36. Han W, Zhou Y, Zhu T, Chu H (2020) Combustion synthesis of defect-rich carbon nanotubes as anodes for sodium-ion batteries. Appl Surf Sci 520:146317. https://doi.org/10.1016/j.apsusc.2020.146317

    Article  CAS  Google Scholar 

  37. Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Crystallogr 43:1126–1128. https://doi.org/10.1107/S0021889810030499

    Article  CAS  Google Scholar 

  38. Caņado LG, Takai K, Enoki T et al (2006) General equation for the determination of the crystallite size la of nanographite by Raman spectroscopy. Appl Phys Lett 88:1–4. https://doi.org/10.1063/1.2196057

    Article  CAS  Google Scholar 

  39. Ferrari A, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B Condens Matter Mater Phys 61:14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  40. Zhou Z, Wu XF, Fong H (2012) Electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes as hierarchical electrodes for supercapacitors. Appl Phys Lett 100:3–7. https://doi.org/10.1063/1.3676193

    Article  CAS  Google Scholar 

  41. Zhou J, Chen J, Han S et al (2017) Constructing optimized three-dimensional electrochemical interface in carbon nanofiber/carbon nanotube hierarchical composites for high-energy-density supercapacitors. Carbon N Y 111:502–512. https://doi.org/10.1016/j.carbon.2016.10.036

    Article  CAS  Google Scholar 

  42. Zhou Z, Wu X-F, Hou H (2014) Electrospun carbon nanofibers surface-grown with carbon nanotubes and polyaniline for use as high-performance electrode materials of supercapacitors. RSC Adv 4:23622–23629. https://doi.org/10.1039/C4RA00964A

    Article  CAS  Google Scholar 

  43. Benko A, Nocuń M, Gajewska M, Błażewicz M (2019) Addition of carbon nanotubes to electrospun polyacrylonitrile as a way to obtain carbon nano fibers with desired properties. Polym Degrad Stab 161:260–276. https://doi.org/10.1016/j.polymdegradstab.2019.01.033

    Article  CAS  Google Scholar 

  44. Sellitti C, Koenig JL, Ishida H (1990) Surface characterization of graphitized carbon fibers by attenuated total reflection fourier transform infrared spectroscopy. Carbon N Y 28:221–228. https://doi.org/10.1016/0008-6223(90)90116-G

    Article  CAS  Google Scholar 

  45. El-Kemary M, Nagy N, El-Mehasseb I (2013) Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process 16:1747–1752. https://doi.org/10.1016/j.mssp.2013.05.018

    Article  CAS  Google Scholar 

  46. Li Y, Qiu W, Qin F et al (2016) Identification of cobalt oxides with Raman scattering and fourier transform infrared spectroscopy. J Phys Chem C 120:4511–4516. https://doi.org/10.1021/acs.jpcc.5b11185

    Article  CAS  Google Scholar 

  47. Zhang T, Huang D, Yang Y et al (2012) Influence of iron (III) acetylacetonate on structure and electrical conductivity of Fe3O4/carbon composite nanofibers. Polym United Kingdom 53:6000–6007. https://doi.org/10.1016/j.polymer.2012.11.015

    Article  CAS  Google Scholar 

  48. Li ZQ, Lu CJ, Xia ZP et al (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon N Y 45:1686–1695. https://doi.org/10.1016/j.carbon.2007.03.038

    Article  CAS  Google Scholar 

  49. Zhang ZL, Brydson R, Aslam Z et al (2011) Investigating the structure of non-graphitising carbons using electron energy loss spectroscopy in the transmission electron microscope. Carbon N Y 49:5049–5063. https://doi.org/10.1016/j.carbon.2011.07.023

    Article  CAS  Google Scholar 

  50. Jurkiewicz K, Pawlyta M, Burian A (2018) Structure of carbon materials explored by local transmission electron microscopy and global powder diffraction probes. C J Carbon Res 4:68. https://doi.org/10.3390/c4040068

    Article  CAS  Google Scholar 

  51. Wei XW, Zhou XM, Wu KL, Chen Y (2011) 3-D flower-like NiCo alloy nano/microstructures grown by a surfactant-assisted solvothermal process. CrystEngComm 13:1328–1332. https://doi.org/10.1039/c0ce00468e

    Article  CAS  Google Scholar 

  52. Kiang CH, Endo M, Ajayan PM et al (1998) Size effects in carbon nanotubes. Phys Rev Lett 81:1869–1872. https://doi.org/10.1103/PhysRevLett.81.1869

    Article  CAS  Google Scholar 

  53. Kharissova OV, Kharisov BI (2014) Variations of interlayer spacing in carbon nanotubes. RSC Adv 4:30807–30815. https://doi.org/10.1039/c4ra04201h

    Article  CAS  Google Scholar 

  54. Sadezky A, Muckenhuber H, Grothe H et al (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon N Y 43:1731–1742. https://doi.org/10.1016/j.carbon.2005.02.018

    Article  CAS  Google Scholar 

  55. Rebelo SLH, Guedes A, Szefczyk ME et al (2016) Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: unraveling disorder in graphitic materials. Phys Chem Chem Phys 18:12784–12796. https://doi.org/10.1039/c5cp06519d

    Article  CAS  Google Scholar 

  56. Härmas R, Palm R, Kurig H, Puusepp L, Pfaff T, Romann T, Aruväli J, Tallo I, Thomberg T, Jänes A, Lust Enn (2021) Carbide-derived carbons: WAXS and Raman spectra for detailed structural analysis. C 7(1):29. https://doi.org/10.3390/c7010029

    Article  CAS  Google Scholar 

  57. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246. https://doi.org/10.1038/nnano.2013.46

    Article  CAS  Google Scholar 

  58. Schuepfer DB, Badaczewski F, Guerra-Castro JM et al (2020) Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. Carbon N Y 161:359–372. https://doi.org/10.1016/j.carbon.2019.12.094

    Article  CAS  Google Scholar 

  59. Ma B, Rodriguez RD, Ruban A et al (2019) The correlation between electrical conductivity and second-order Raman modes of laser-reduced graphene oxide. Phys Chem Chem Phys 21:10125–10134. https://doi.org/10.1039/c9cp00093c

    Article  CAS  Google Scholar 

  60. Bokobza L, Bruneel J-L, Couzi M (2015) Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. C J Carbon 1:77–94. https://doi.org/10.3390/c1010077

    Article  Google Scholar 

  61. Schüpfer DB, Badaczewski F, Peilstöcker J et al (2021) Monitoring the thermally induced transition from sp3-hybridized into sp2-hybridized carbons. Carbon N Y 172:214–227. https://doi.org/10.1016/j.carbon.2020.09.063

    Article  CAS  Google Scholar 

  62. Oberlin A (1984) Carbonization and graphitization. Carbon N Y 22:521–541. https://doi.org/10.1088/0305-4624/5/1/402

    Article  CAS  Google Scholar 

  63. Puech K, Paredes M, Weiss-Hortala K, Ratel-Ramond P, Pellenq M (2019) Analyzing the Raman spectra of graphenic carbon materials from kerogens to nanotubes: What type of information can be extracted from defect bands? C 5(4):69. https://doi.org/10.3390/c5040069

    Article  CAS  Google Scholar 

  64. Maslova OA, Ammar MR, Guimbretière G, Rouzaud JN, Simon P (2012) Determination of crystallite size in polished graphitized carbon by Raman spectroscopy. Phys rev B 86(13):134205

    Article  Google Scholar 

  65. Rao R, Pierce N, Dasgupta A (2014) On the charge transfer between single-walled carbon nanotubes and graphene. Appl Phys Lett 105(7):073115

    Article  Google Scholar 

  66. Eckmann A, Felten A, Mishchenko A et al (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12:3925–3930. https://doi.org/10.1021/nl300901a

    Article  CAS  Google Scholar 

  67. Cançado LG, Gomes M, da Silva EH, Ferreira M, Hof F, Kampioti K, Huang K, Pénicaud A, Achete CA, Capaz RB, Jorio A (2017) Disentangling contributions of point and line defects in the Raman spectra of graphene-related materials. 2D Mater 4(2):025039. https://doi.org/10.1088/2053-1583/aa5e77

    Article  CAS  Google Scholar 

  68. Mallet-Ladeira P, Puech P, Toulouse C et al (2014) A Raman study to obtain crystallite size of carbon materials: a better alternative to the tuinstra-koenig law. Carbon N Y 80:629–639. https://doi.org/10.1016/j.carbon.2014.09.006

    Article  CAS  Google Scholar 

  69. Mott NF (1968) Metal-insulator transition. Rev Mod Phys 40:677–683

    Article  CAS  Google Scholar 

  70. Eom JH, Lee H, Im J et al (2006) Electronic structure of defects and quantum transport in carbon nanotubes. Phys B Condens Matter 376–377:7–10. https://doi.org/10.1016/j.physb.2005.12.005

    Article  CAS  Google Scholar 

  71. Abid SP, Islam SS et al (2018) Reduced graphene oxide (rGO) based wideband optical sensor and the role of temperature, defect states and quantum efficiency. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-21686-2

    Article  CAS  Google Scholar 

  72. Lai KWC, Xi N, Fung CKM et al (2009) Engineering the band gap of carbon nanotube for infrared sensors. Appl Phys Lett 95:2007–2010. https://doi.org/10.1063/1.3269636

    Article  CAS  Google Scholar 

  73. Dincer K, Waisi B, Önal G et al (2018) Investigation of optical and dispersion parameters of electrospinning grown activated carbon nanofiber (ACNF) layer. Synth Met 237:16–22. https://doi.org/10.1016/j.synthmet.2018.01.008

    Article  CAS  Google Scholar 

  74. Chung DDL, Wang S (1999) Carbon fiber polymer-matrix structural composite as a semiconductor and concept of optoelectronic and electronic devices made from it. Smart Mater Struct 8:161–166. https://doi.org/10.1088/0964-1726/8/1/018

    Article  Google Scholar 

  75. Velo-Gala I, López-Peñalver JJ, Sánchez-Polo M, Rivera-Utrilla J (2015) Role of activated carbon on micropollutants degradation by different radiation processes. Mediterr J Chem 4(2):68–80

    Article  Google Scholar 

  76. Hamilton EM (1972) Variable range hopping in a non-uniform density of states. Philos Mag 26:1043–1045. https://doi.org/10.1080/14786437208226975

    Article  Google Scholar 

  77. Kędzierski K, Rytel K, Barszcz B et al (2017) On the temperature dependent electrical resistivity of CNT layers in view of variable range hopping models. Org Electron 43:253–261. https://doi.org/10.1016/j.orgel.2017.01.037

    Article  CAS  Google Scholar 

  78. Raj KG, Joy PA (2015) Cross over from 3D variable range hopping to the 2D weak localization conduction mechanism in disordered carbon with the extent of graphitization. Phys Chem Chem Phys 17:16178–16185. https://doi.org/10.1039/c5cp00329f

    Article  CAS  Google Scholar 

  79. Dhanya I, Ph D, Krishnan M et al (2021) Mott variable range hopping transport in thermal evaporated vanadyl 2, 3 naphthalocyanine thin films. Mater Chem Phys 272:125029. https://doi.org/10.1016/j.matchemphys.2021.125029

    Article  CAS  Google Scholar 

  80. Sui JX, Wang XX, Zhang XT et al (2020) Variable-range hopping conduction with positive and negative magnetoresistance transformation in reduced graphene oxide mesostructures. J Magn Magn Mater 498:166107. https://doi.org/10.1016/j.jmmm.2019.166107

    Article  CAS  Google Scholar 

  81. Saleemi AS, Singh R, Luo Z, Zhang X (2017) Structure dependent negative magnetoresistance of amorphous carbon thin films. Diam Relat Mater 72:108–113. https://doi.org/10.1016/j.diamond.2017.01.009

    Article  CAS  Google Scholar 

  82. Hilke M, Massicotte M, Whiteway E, Yu V (2014) Weak localization in graphene: theory, simulations, and experiments. Sci World J. https://doi.org/10.1155/2014/737296

    Article  Google Scholar 

  83. Pisana S, Lazzeri M, Casiraghi C et al (2007) Breakdown of the adiabatic born-oppenheimer approximation in graphene. Nat Mater 6:198–201. https://doi.org/10.1038/nmat1846

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by the National Science Center, Poland, project no. UMO-2019/33/N/ST5/02500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Fraczek-Szczypta.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 458 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zambrzycki, M., Jeleń, P. & Fraczek-Szczypta, A. Structure and electrical transport properties of electrospun carbon nanofibers/carbon nanotubes 3D hierarchical nanocomposites: effect of the CCVD synthesis conditions. J Mater Sci 57, 9334–9356 (2022). https://doi.org/10.1007/s10853-022-07267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07267-9

Navigation