Skip to main content

Advertisement

Log in

Adaptive VAlCN-Ag composite and VAlCN/VN-Ag multilayer coatings intended for applications at elevated temperature

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

An Author Correction to this article was published on 20 August 2022

This article has been updated

Abstract

High-temperature adaptive solid lubricant coatings, which could provide lubricating performance at broad temperature, are nowadays commercially available and increasingly required for industrial applications. In this work, VAlCN-Ag nanocomposite and VAlCN/VN-Ag multilayer coatings were prepared on Inconel 718 alloy by multi-arc ion planting technique of V and Ag targets either in a gaseous mixture. The multilayer coatings have a relatively higher hardness of 27 Gpa and modulus of 370 Gpa than VAlCN-Ag coatings. The toughness was significantly improved with the high H3/E2 of 0.147. The tribological properties were evaluated by a UMT high-temperature friction and wear tester when tested in the temperature range 25–600 °C. A positive correlation between wear rate and temperature was found for both composite and multilayer coatings. The synergistic lubricant effect derived from both AgVO3 and V2O5 Magnéli phases is responsible for the lowest friction coefficient of about 0.18 for VAlCN-Ag coating at 600 °C. The VAlCN/VN-Ag multilayer coatings have also a low friction coefficient of 0.25, together with low wear rate of 3.2 × 10−5 mm3/Nm, providing guidance for coating design and potential industrial applications as protective coating under high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Change history

References

  1. Zabinski JS, Sanders JH, Nainaparampil J, Prasad SV (2000) Lubrication using a microstructurally engineered oxide: performance and mechanisms. Tribol Lett 8:103–116

    Article  CAS  Google Scholar 

  2. Donnet C, Erdemir A (2004) Solid lubricant coatings: recent developments and future trends. Tribol Lett 17:389–397

    Article  CAS  Google Scholar 

  3. Sudagar J, Lian JS, Sha W (2013) Electroless nickel, alloy, composite and nano coatings—a critical review. J Alloys Compd 571:183–204

    Article  CAS  Google Scholar 

  4. Zhu SY, Cheng J, Qiao ZH, Yang J (2019) High temperature solid-lubricating materials: a review. Tribol Int 133:206–223

    Article  CAS  Google Scholar 

  5. Muratore C, Voevodin AA (2009) Chameleon coatings: adaptive surfaces to reduce friction and wear in extreme environments. Annu Rev Mater Res 39:297–324

    Article  CAS  Google Scholar 

  6. Stone D, Liu J, Singh DP, Muratore C, Voevodin AA, Mishra S, Rebholz C, Ge Q, Aouadi SM (2010) Layered atomic structures of double oxides for low shear strength at high temperatures. Scr Mater 62:735–738

    Article  CAS  Google Scholar 

  7. Sundgren JE, Birch J, Hakansson G, Hultman L, Helmersson U (1990) Growth, structural characterization and properties of hard and wear-protective layered materials. Thin Solid Films 193:818–831

    Article  Google Scholar 

  8. Kral C, Lengauer W, Rafaja D, Ettmayer P (1998) Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides. J Alloys Compd 265:215–233

    Article  CAS  Google Scholar 

  9. Dellacorte C, Edmonds BJ (1995) Preliminary evaluation of PS300: A new self-lubricating high temperature composite coating for use to 800 °C. NASA/TM-107056

  10. Dellacorte C, Edmonds BJ (2009) NASA PS400: a new temperature solid lubricant coating for high temperature wear applications. NASA/TM-215678

  11. Voevodin AA, Fitz TA, Hu JJ, Zabinski JS (2002) Nanocomposite tribological coatings with “chameleon” surface adaptation. J Vac Sci Technol A: Vac, Surf, Films 20:1434–1444

    Article  CAS  Google Scholar 

  12. Baker C, Hu J, Voevodin A (2006) Preparation of Al2O3/DLC/Au/MoS2 chameleon coatings for space and ambient environments. Surf Coat Technol 201:4224–4229

    Article  CAS  Google Scholar 

  13. Fateh N, Fontalvo GA, Gassner G, Mitterer C (2007) Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings. Wear 262:1152–1158

    Article  CAS  Google Scholar 

  14. Brizuela M, Garcia-Luis A, Braceras I, Onate JI, Sanchez-Lopez JC, Martinez-Martinez D, Lopez-Cartes C, Fernandez A (2005) Magnetron sputtering of Cr(Al)N coatings: mechanical and tribological study. Surf Coat Technol 200:192–197

    Article  CAS  Google Scholar 

  15. Ye Y, Jiang Z, Zou Y, Guo S, Zeng X, Yi Z, Yu J, Gui J, Liu T, Chen H (2020) Enhanced anti-wear property of VCN coating in seawater with the optimization of bias voltage. Ceram Int 46:7939–7946

    Article  CAS  Google Scholar 

  16. Gassner G, Mayrhofer PH, Kutschej K, Mitterer C, Kathrein M (2004) A new low friction concept for high temperatures: lubricious oxide formation on sputtered VN coatings. Tribol Lett 17:751–756

    Article  CAS  Google Scholar 

  17. Franz R, Mitterer C (2013) Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: a review. Surf Coat Technol 228:1–13

    Article  CAS  Google Scholar 

  18. Glaser A, Surnev S, Netzer FP, Fateh N, Fontalvo GA, Mitterer C (2007) Oxidation of vanadium nitride and titanium nitride coatings. Surf Sci 601:1153–1159

    Article  CAS  Google Scholar 

  19. Fateh N, Fontalvo GA, Gassner G, Mitterer C (2007) The beneficial effect of high-temperature oxidation on the tribological behaviour of V and VN coatings. Tribol Lett 28:1–7

    Article  CAS  Google Scholar 

  20. Chang YY, Weng SY, Chen CH, Fu FX (2017) High temperature oxidation and cutting performance of AlCrN, TiVN and multilayered AlCrN/TiVN hard coatings. Surf Coat Technol 332:494–503

  21. Gong WJC (2021) Effect of charge voltage on the microstructural, mechanical, and tribological properties of Mo–Cu–V–N nanocomposite coatings. Coatings 11:1595

    Google Scholar 

  22. Zhao H, Yu L, Mu C, Ye F (2016) Structure and properties of Si-implanted VN coatings prepared by RF magnetron sputtering. Mater Charact 117:65–75

    Article  CAS  Google Scholar 

  23. Zhu P, Ge F, Li S, Xue Q, Huang F (2013) Microstructure, chemical states, and mechanical properties of magnetron co-sputtered V1−xAlxN coatings. Surf Coat Technol 232:311–318

    Article  CAS  Google Scholar 

  24. Mu YT, Liu M, Zhao YQ (2016) Carbon doping to improve the high temperature tribological properties of VN coating. Tribol Int 97:327–336

    Article  CAS  Google Scholar 

  25. Wang Z, Li X, Wang X, Cai S, Ke P, Wang A (2016) Hard yet tough V-Al-C-N nanocomposite coatings: microstructure, mechanical and tribological properties. Surf Coat Technol 304:553–559

    Article  CAS  Google Scholar 

  26. Hsieh JH, Chiu CH, Li C, Wu W, Chang SY (2013) Development of anti-wear and anti-bacteria TaN-(Ag, Cu) thin films—a review. Surf Coat Technol 233:159–168

    Article  CAS  Google Scholar 

  27. Bondarev AV, Kiryukhantsev-Korneev PV, Sidorenko DA, Shtansky DV (2016) A new insight into hard low friction MoCN-Ag coatings intended for applications in wide temperature range. Mater Des 93:63–72

    Article  CAS  Google Scholar 

  28. Basnyat P, Luster B, Kertzman Z, Stadler S, Erdemir A (2007) Mechanical and tribological properties of CrAlN-Ag self-lubricating films. Surf Coat Technol 202:1011–1016

    Article  CAS  Google Scholar 

  29. Luster B, Stone D, Singh DP, To Baben M, Schneider JM, Polychronopoulou K, Rebholz C, Kohli P, Aouadi SM (2011) Textured VN coatings with Ag3VO4 solid lubricant reservoirs. Surf Coat Technol 206:1932–1935

    Article  CAS  Google Scholar 

  30. Bondarev AV, Golizadeh M, Shvyndina NV, Shchetinin IV, Shtansky DV (2017) Microstructure, mechanical, and tribological properties of Ag-free and Ag-doped VCN coatings. Surf Coat Technol 331:77–84

    Article  CAS  Google Scholar 

  31. Cai Q, Li SX, Pu JB, Cai ZB, Lu X, Cui QF, Wang LP (2019) Effect of multicomponent doping on the structure and tribological properties of VN-based coatings. J Alloys Compd 806:566–574

    Article  CAS  Google Scholar 

  32. Zhang H, Li Z, He W, Liao B, He G, Cao X, Li Y (2018) Damage evolution and mechanism of TiN/Ti multilayer coatings in sand erosion condition. Surf Coat Technol 353:210–220

    Article  CAS  Google Scholar 

  33. Pradhaban G, Kuppusami P, Ramachandran D, Viswanathan K, Ramaseshan R (2016) Nanomechanical properties of TiN/ZrN multilayers prepared by pulsed laser deposition. In: Materials today-proceedings, pp 1627–1632

  34. Wang YX, Zhang S (2014) Toward hard yet tough ceramic coatings. Surf Coat Technol 258:1–16

    Article  CAS  Google Scholar 

  35. Rao J, Sharma A, Rose T (2018) Titanium aluminium nitride and titanium boride multilayer coatings designed to combat tool wear. Coatings 8:12

    Article  CAS  Google Scholar 

  36. Boxman R (1992) Macroparticle contamination in cathodic arc coatings: generation, transport and control. Surf Coat Tech 52:39–50

    Article  CAS  Google Scholar 

  37. Zhang J, Wang M, Yang J, Liu Q, Li D (2007) Enhancing mechanical and tribological performance of multilayered CrN/ZrN coatings. Surf Coat Technol 201:5186–5189

    Article  CAS  Google Scholar 

  38. Leyland A, Matthews A (2000) On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246:1–11

    Article  CAS  Google Scholar 

  39. Chen XJ, Du Y, Chung YW (2019) Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings. Thin Solid Films 688:137265

    Article  CAS  Google Scholar 

  40. Ningyi Y, Jinhua L, Chenglu L (2002) Valence reduction process from sol–gel V2O5 to VO2 thin films. Appl Surf Sci 191:176–180

    Article  Google Scholar 

  41. Kutschej K, Mayrhofer P, Kathrein M, Polcik P, Mitterer C (2005) Influence of oxide phase formation on the tribological behaviour of Ti–Al–V–N coatings. Surf Coat Technol 200:1731–1737

    Article  CAS  Google Scholar 

  42. Tillmann W, Kokalj D, Stangier D, Paulus M, Sternemann C, Tolan M (2018) Investigation on the oxidation behavior of AlCrVxN thin films by means of synchrotron radiation and influence on the high temperature friction. Appl Surf Sci 427:511–521

    Article  CAS  Google Scholar 

  43. Tseng C, Hsieh J, Wu W, Chang S, Chang C (2008) Surface and mechanical characterization of TaN–Ag nanocomposite thin films. Thin Solid Films 516:5424–5429

    Article  CAS  Google Scholar 

  44. Aouadi SM, Singh DP, Stone D, Polychronopoulou K, Nahif F, Rebholz C, Muratore C, Voevodin AA (2010) Adaptive VN/Ag nanocomposite coatings with lubricious behavior from 25 to 1000 °C. Acta Mater 58:5326–5331

    Article  CAS  Google Scholar 

  45. Albrecht TA, Stern CL, Poeppelmeier KR (2007) The Ag2O− V2O5− HF (aq) System and Crystal Structure of α-Ag3VO4. Inorg Chem 46:1704–1708

    Article  CAS  Google Scholar 

  46. Voevodin AA, Zabinski J (2005) Nanocomposite and nanostructured tribological materials for space applications. Compos Sci Technol 65:741–748

    CAS  Google Scholar 

  47. Zhang S, Bui XL, Li X (2006) Thermal stability and oxidation properties of magnetron sputtered diamond-like carbon and its nanocomposite coatings. Diam Relat Mater 15:972–976

    Article  CAS  Google Scholar 

  48. Mulligan C, Blanchet T, Gall D (2010) CrN–Ag nanocomposite coatings: tribology at room temperature and during a temperature ramp. Surf Coat Technol 204:1388–1394

    Article  CAS  Google Scholar 

  49. Gao H, Otero-de-la-Roza A, Gu J, Stone DA, Aouadi SM, Johnson ER, Martini A (2015) (Ag, Cu)–Ta–O ternaries as high-temperature solid-lubricant coatings. Acs Appl Mater Inter 7:15422–15429

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the Zhejiang Provincial Natural Science Foundation (Grant No. LR20E050001), National Science and Technology Major Project (2017-VII-0013-0110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jibin Pu.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Q., Bai, X. & Pu, J. Adaptive VAlCN-Ag composite and VAlCN/VN-Ag multilayer coatings intended for applications at elevated temperature. J Mater Sci 57, 8113–8126 (2022). https://doi.org/10.1007/s10853-022-07153-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07153-4

Navigation