Skip to main content
Log in

Nafion membranes reinforced by cellulose nanocrystals for fuel cell applications: aspect ratio and heat treatment effects on physical properties

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study explored the improvement of the physicochemical properties (mechanical resistance, water uptake, swelling, etc.) of Nafion membranes by cellulose nanocrystals (CNCs). These composite membranes were prepared from Ramie and Tunicate nanocrystals with respective aspect ratios of about 28 and 106. It was demonstrated that, regardless of the type of nanocrystals, increasing the cellulose weight content from 0 to 10 wt% increased the water uptake and the thickness swelling and decreased the in-plane swelling of the composite membranes during water immersion. The mechanical performances of the composite membranes (tensile strength, elongation at break and Young’s modulus) were also enhanced, with the best compromise for Tunicate nanocrystals found to be 5 wt%. The effect of thermal annealing up to 150 °C on the Nafion-Tunicate 5 wt% composite was tested and compared to that of pure Nafion. With thermal annealing, a small decrease in water uptake capacity, protonic conductivity, ion exchange capacity and hydration number was observed for both membranes. At the sub-molecular level, FTIR data suggest that the heat treatment of Nafion-Tunicate membranes induces cross-linking reactions between sulfonic groups of Nafion chains and surface functional groups of CNCs, leading for example to sulfonic ester links. The exothermic peak observed by DSC can assign an increase of the crystalline phase of Nafion chains and especially in the vicinity of CNCs. All cross-linkages led to an improvement in the mechanical resistance of the membranes when thermal annealing was below 130 °C.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Bose S, Kuila T, Thi XLN, Kim NH, Lau KT, Lee JH (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36:813–843

    Article  CAS  Google Scholar 

  2. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl Energy 88:981–1007

    Article  CAS  Google Scholar 

  3. Kim DJ, Jo MJ, Nam SY (2015) A review of polymer-nanocomposite electrolyte membranes for fuel cell application. J Ind Eng Chem 21:36–52

    Article  CAS  Google Scholar 

  4. Sapkota P, Boyer C, Dutta R, Cazorla C, Aguey-Zinsou KF (2020) Planar polymer electrolyte membrane fuel cells: powering portable devices from hydrogen. Sustain Energy Fuels 4:439–468

    Article  CAS  Google Scholar 

  5. Alaswad A, Omran A, Sodre JR, Wilberforce T, Pignatelli G, Dassisti M et al (2021) Technical and commercial challenges of proton-exchange membrane (PEM) fuel cells. Energies 14:144. https://doi.org/10.3390/en14010144

    Article  CAS  Google Scholar 

  6. Walkowiak-Kulikowska J, Wolska J, Koroniak H (2017) Polymers application in proton exchange membranes for fuel cells (PEMFCs). Phys Sci Rev. https://doi.org/10.1515/psr-2017-0018

    Article  Google Scholar 

  7. Hsu WY, Gierke TD (1983) Ion-transport and clustering in nafion perfluorinated membranes. J Membr Sci 13:307–326

    Article  CAS  Google Scholar 

  8. Rubatat L, Gebel G, Diat O (2004) Fibrillar structure of nafion: matching Fourier and real space studies of corresponding films and solutions. Macromolecules 37:7772–7783

    Article  CAS  Google Scholar 

  9. Bakangura E, Wu L, Ge L, Yang ZJ, Xu TW (2016) Mixed matrix proton exchange membranes for fuel cells: state of the art and perspectives. Prog Polym Sci 57:103–152

    Article  CAS  Google Scholar 

  10. Karimi MB, Mohammadi F, Hooshyari K (2019) Recent approaches to improve nafion performance for fuel cell applications: a review. Int J Hydrog Energy 44:28919–28938

    Article  CAS  Google Scholar 

  11. Tritt-Goc J, Lindner L, Bielejewski M, Markiewicz E, Pankiewicz R (2020) Synthesis, thermal properties, conductivity and lifetime of proton conductors based on nanocrystalline cellulose surface-functionalized with triazole and imidazole. Int J Hydrog Energy 45:13365–13375

    Article  CAS  Google Scholar 

  12. Choudhury RR, Sahoo SK, Gohil JM (2020) Potential of bioinspired cellulose nanomaterials and nanocomposite membranes thereof for water treatment and fuel cell applications. Cellulose 27:6719–6746

    Article  CAS  Google Scholar 

  13. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951

    Article  CAS  Google Scholar 

  14. Dickinson EJF, Smith G (2020) Modelling the proton-conductive membrane in practical polymer electrolyte membrane fuel cell (PEMFC) simulation: a review. Membranes 10:310

    Article  CAS  Google Scholar 

  15. Safronova E, Golubenko D, Pourcelly G, Yaroslavtsev A (2015) Mechanical properties and influence of straining on ion conductivity of perfluorosulfonic acid Nafion (R)-type membranes depending on water uptake. J Membr Sci 473:218–225

    Article  CAS  Google Scholar 

  16. Shi SW, Chen G, Wang ZF, Chen X (2013) Mechanical properties of Nafion 212 proton exchange membrane subjected to hygrothermal aging. J Power Sources 238:318–323

    Article  CAS  Google Scholar 

  17. Theiler A, Karpenko-Jereb L (2015) Modelling of the mechanical durability of constrained nafion membrane under humidity cycling. Int J Hydrog Energy 40:9773–9782

    Article  CAS  Google Scholar 

  18. Xiao P, Li JS, Tang HL, Wang Z, Pan M (2013) Physically stable and high performance Aquivion/PTFE composite membrane for high temperature fuel cell application. J Membr Sci 442:65–71

    Article  CAS  Google Scholar 

  19. Amjadi M, Rowshanzamir S, Peighambardoust SJ, Sedghi S (2012) Preparation, characterization and cell performance of durable nafion/SiO2 hybrid membrane for high-temperature polymeric fuel cells. J Power Sources 210:350–357

    Article  CAS  Google Scholar 

  20. Dresch MA, Isidoro RA, Linardi M, Rey JFQ, Fonseca FC, Santiago EI (2013) Influence of sol-gel media on the properties of nafion-SiO2 hybrid electrolytes for high performance proton exchange membrane fuel cells operating at high temperature and low humidity. Electrochim Acta 94:353–359

    Article  CAS  Google Scholar 

  21. Gerasimova E, Safronova E, Ukshe A, Dobrovolsky Y, Yaroslavtsev A (2016) Electrocatalytic and transport properties of hybrid Nafion (R) membranes doped with silica and cesium acid salt of phosphotungstic acid in hydrogen fuel cells. Chem Eng J 305:121–128

    Article  CAS  Google Scholar 

  22. Tang HL, Pan M (2008) Synthesis and characterization of a self-assembled nafion/silica nanocomposite membrane for polymer electrolyte membrane fuel cells. J Phys Chem C 112:11556–11568

    Article  CAS  Google Scholar 

  23. Tang HL, Wan Z, Pan M, Jiang SP (2007) Self-assembled Nafion-silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells. Electrochem Commun 9:2003–2008

    Article  CAS  Google Scholar 

  24. Santiago EI, Isidoro RA, Dresch MA, Matos BR, Linardi M, Fonseca FC (2009) Nafion-TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Electrochim Acta 54:4111–4117

    Article  CAS  Google Scholar 

  25. Taghizadeh MT, Vatanparast M (2016) Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells. J Colloid Interface Sci 483:1–10

    Article  CAS  Google Scholar 

  26. Fatyeyeva K, Bigarre J, Blondel B, Galiano H, Gaud D, Lecardeur M et al (2011) Grafting of p-styrene sulfonate and 1,3-propane sultone onto Laponite for proton exchange membrane fuel cell application. J Membr Sci 366:33–42

    Article  CAS  Google Scholar 

  27. Zhang B, Cao Y, Jiang ST, Li Z, He GW, Wu H (2016) Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity. J Membr Sci 518:243–253

    Article  CAS  Google Scholar 

  28. Yin CS, Xiong BY, Liu QC, Li JJ, Qian LB, Zhou YW et al (2019) Lateral-aligned sulfonated carbon-nanotubes/Nafion composite membranes with high proton conductivity and improved mechanical properties. J Membr Sci 591:117356

    Article  CAS  Google Scholar 

  29. Teixeira FC, de Sa AI, Teixeira APS, Rangel CM (2019) Nafion phosphonic acid composite membranes for proton exchange membranes fuel cells. Appl Surf Sci 487:889–897

    Article  CAS  Google Scholar 

  30. Tsai JC, Lin CK (2011) Effect of PTFE content in gas diffusion layer based on Nafion (R)/PTFE membrane for low humidity proton exchange membrane fuel cell. J Taiwan Inst Chem Eng 42:945–951

    Article  CAS  Google Scholar 

  31. Albu AM, Maior I, Nicolae CA, Bocaneala FL (2016) Novel Pva proton conducting membranes doped with polyaniline generated by in-situ polymerization. Electrochim Acta 211:911–917

    Article  CAS  Google Scholar 

  32. Malinowski M, Iwan A, Parafiniuk K, Gorecki L, Pasciak G (2015) Electrochemical properties of PEM fuel cells based on nafion-polybenzimidazole-imidazole hybrid membranes. Int J Hydrog Energy 40:833–840

    Article  CAS  Google Scholar 

  33. Molla S, Compan V (2011) Performance of composite nafion/PVA membranes for direct methanol fuel cells. J Power Sources 196:2699–2708

    Article  CAS  Google Scholar 

  34. Park HS, Kim YJ, Hong WH, Lee HK (2006) Physical and electrochemical properties of nafion/polypyrrole composite membrane for DMFC. J Membr Sci 272:28–36

    Article  CAS  Google Scholar 

  35. Yao J, Xu GX, Zhao ZM, Guo J, Li SH, Cai WW et al (2019) An enhanced proton conductivity and reduced methanol permeability composite membrane prepared by sulfonated covalent organic nanosheets/Nafion. Int J Hydrog Energy 44:24985–24996

    Article  CAS  Google Scholar 

  36. Ru CY, Gu YY, Duan YT, Na H, Zhao CJ (2019) Nafion based semi-interpenetrating polymer network membranes from a cross-linkable SPAEK and a fluorinated epoxy resin for DMFCs. Electrochim Acta 324:134873

    Article  CAS  Google Scholar 

  37. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. https://doi.org/10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  38. Eichhorn SJ, Gandini A (2010) Materials from renewable resources. Mrs. Bulletin 35:187–190

    Google Scholar 

  39. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem-Int Edition 50:5438–5466

    Article  CAS  Google Scholar 

  40. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227

    Article  CAS  Google Scholar 

  41. Hambardzumyan A, Foulon L, Bercu NB, Pernes M, Maigret JE, Molinari M et al (2015) Organosolv lignin as natural grafting additive to improve the water resistance of films using cellulose nanocrystals. Chem Eng J 264:780–788

    Article  CAS  Google Scholar 

  42. Hambardzumyan A, Foulon L, Chabbert B, Aguie-Beghin V (2012) Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties. Biomacromol 13:4081–4088

    Article  CAS  Google Scholar 

  43. Aguié-Béghin V., Paës G., Molinari M., Chabbert B. Films and coatings from lignocellulosic polymers (2017) In edible films and coatings. Fundamentals and applications, Montero M. P., Gomez-Guillen M. C., Lopez-Caballero M. E., Barbosa-Canovas G. V., Eds. CRC Press Taylor & Francis Group: 2017; pp 143–160.

  44. Lasrado D, Ahankari S, Kar K (2020) Nanocellulose-based polymer composites for energy applications-a review. J Appl Polym Sci. https://doi.org/10.1002/app.4895D

    Article  Google Scholar 

  45. Da Silva PD, Ruggiero R, Morais LC, Machado AEH, Mazeau K (2004) Theoretical and experimental studies on the adsorption of aromatic compounds onto cellulose. Langmuir 20:3151–3158

    Article  Google Scholar 

  46. Chen X, Yuan FS, Zhang H, Huang Y, Yang JZ, Sun DP (2016) Recent approaches and future prospects of bacterial cellulose-based electroconductive materials. J Mater Sci 51:5573–5588. https://doi.org/10.1007/s10853-016-9899-2

    Article  CAS  Google Scholar 

  47. Noonan C, Tajvidi M, Tayeb AH, Shahinpoor M, Tabatabaie SE (2019) Structure-property relationships in hybrid cellulose nanofibrils/nafion-based ionic polymer-metal composites. Materials 12:1269. https://doi.org/10.3390/ma12081269

    Article  CAS  Google Scholar 

  48. Wang LK, Zuo XH, Raut A, Isseroff R, Xue Y, Zhou YC et al (2019) Operation of proton exchange membrane (PEM) fuel cells using natural cellulose fiber membranes. Sustain Energy Fuels 3:2725–2732

    Article  CAS  Google Scholar 

  49. Sriruangrungkamol A, Chonkaew W (2020) Modification of nanocellulose membrane by impregnation method with sulfosuccinic acid for direct methanol fuel cell applications. Polym Bull 78:3705–3728. https://doi.org/10.1007/s00289-020-03289-y

    Article  CAS  Google Scholar 

  50. Hasani-Sadrabadi MM, Dashtimoghadam E, Nasseri R, Karkhaneh A, Majedi FS, Mokarram N et al (2014) Cellulose nanowhiskers to regulate the microstructure of perfluorosulfonate ionomers for high-performance fuel cells. J Mater Chem A 2:11334–11340

    Article  CAS  Google Scholar 

  51. Jiang GP, Zhang J, Qiao JL, Jiang YM, Zarrin H, Chen ZW et al (2015) Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells. J Power Sources 273:697–706

    Article  CAS  Google Scholar 

  52. Aguié-Béghin V, Molinari M, Hambardzumyan A, Foulon L, Habibi Y, Heim T, Bossey R and Douillard R (2009), Preparation of ordered films from cellulose nanocrystals In Model cellulosic surfaces ACS symposium series book 1019 eds. Roman M, ACS division of cellulose and renewable material pp. 313.

  53. Marcuello C, Foulon L, Chabbert B, Molinari M, Aguie-Beghin V (2018) Langmuir-Blodgett Procedure to Precisely Control the Coverage of Functionalized AFM Cantilevers for SMFS Measurements: application with cellulose nanocrystals. Langmuir 34:9376–9386

    Article  CAS  Google Scholar 

  54. Iwamoto S, Kai WH, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10:2571–2576

    Article  CAS  Google Scholar 

  55. Muraille L, Aguie-Beghin V, Chabbert B, Molinari M (2017) Bioinspired lignocellulosic films to understand the mechanical properties of lignified plant cell walls at nanoscale. Sci Rep 7:44065. https://doi.org/10.1038/srep44065

    Article  CAS  Google Scholar 

  56. Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488

    Article  CAS  Google Scholar 

  57. Fox JD, Capadona JR, Marasco PD, Rowan SJ (2013) Bioinspired water-enhanced mechanical gradient nanocomposite films that mimic the architecture and properties of the squid beak. J Am Chem Soc 135:5167–5174

    Article  CAS  Google Scholar 

  58. Gindl W, Keckes J (2004) Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos Sci Technol 64:2407–2413

    Article  CAS  Google Scholar 

  59. Cao F, Schwartz TJ, McClelland DJ, Krishna SH, Dumesic JA, Huber GW (2015) Dehydration of cellulose to levoglucosenone using polar aprotic solvents. Energy Environ Sci 8:1808–1815

    Article  CAS  Google Scholar 

  60. Zhu C, Krumm C, Facas GG, Neurock M, Dauenhauer PJ (2017) Energetics of cellulose and cyclodextrin glycosidic bond cleavage. React Chem Eng 2:201–214

    Article  CAS  Google Scholar 

  61. de Almeida SH, Kawano Y (1999) Thermal behavior of nafion membranes. J Therm Anal Calorim 58:569–577

    Article  Google Scholar 

  62. Jung H-Y, Won KJ (2012) Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC). Int J Hydrog Energy 37:12580–12585

    Article  CAS  Google Scholar 

  63. Lin H-L, Yu TL, Huang C-H, Lin T-L (2005) Morphology study of Nafion membranes prepared by solutions casting. J Polym Sci Part B-Polym Phys 43:3044–3057

    Article  CAS  Google Scholar 

  64. Molla S, Compan V (2011) Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. J Membr Sci 372:191–200

    Article  CAS  Google Scholar 

  65. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  66. Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohyd Polym 100:9–16

    Article  CAS  Google Scholar 

  67. Grube M, Shvirksts K, Denina I, Ruklisa M, Semjonovs P (2016) Fourier-transform infrared spectroscopic analyses of cellulose from different bacterial cultivations using microspectroscopy and a high-throughput screening device. Vib Spectrosc 84:53–57

    Article  CAS  Google Scholar 

  68. Kacurakova M, Smith AC, Gidley MJ, Wilson RH (2002) Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohyd Res 337:1145–1153

    Article  CAS  Google Scholar 

  69. Alentiev A, Kostina J, Bondarenko G (2006) Chemical aging of nafion: FTIR study. Desalination 200:32–33

    Article  CAS  Google Scholar 

  70. Collette FM, Lorentz C, Gebel G, Thominette F (2009) Hygrothermal aging of nafion (R). J Membr Sci 330:21–29

    Article  CAS  Google Scholar 

  71. Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626

    Article  CAS  Google Scholar 

  72. Gruger A, Regis A, Schmatko T, Colomban P (2001) Nanostructure of nafion (R) membranes at different states of hydration–an IR and Raman study. Vib Spectrosc 26:215–225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Region Centre Val de Loire, France, as part of the ARD2020 LAVOISIER program through the UMANITHY project. Fréderic Mahut and Raphael Coste are thanked for AFM characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Aguié-Béghin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hambardzumyan, A., Vayer, M., Foulon, L. et al. Nafion membranes reinforced by cellulose nanocrystals for fuel cell applications: aspect ratio and heat treatment effects on physical properties. J Mater Sci 57, 4684–4703 (2022). https://doi.org/10.1007/s10853-022-06921-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06921-6

Navigation