Skip to main content
Log in

Dual antibacterial polypeptide-coated PCL@ZIF-8 nanofiber reduces infection and inflammation in burn wounds

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Burns on human skin often leads to slow recovery because of continuous wound infections caused by the loss of skin protection. In this study, a seed-free soaking method is put forward to prepare PCL@ZIF-8/εPL nanofibers as a dressing for burn wounds. This ZIF-8-coated polycaprolactone (PCL) fiber exhibits increased specific surface area, significantly increasing the polypeptide loading of epsilon polylysine (εPL) from 12 to 20 wt.%. The antibacterial experiment found that ZIF-8 and εPL exhibited dual antibacterial properties, and after εPL was loaded to ZIF-8, the nanofiber demonstrated stronger antibacterial properties that can better kill the remaining tenacious bacteria. This high-efficiency bactericidal property, combined with the ability to protect wounds from common infections by bacteria in the air, would promote wound healing, shortening the healing time period from 24 to 17 days. Further tissue sections confirm that the shielding effect and dual antibacterial properties of the composite fiber membrane are the reasons behind the acceleration of the healing of burns and scalds. Shielding and antibacterial material are helpful for the treatment of burns and scalds, and it may also guide the treatment of other types of wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pruitt BA Jr, Tumbusch WT, Mason AD Jr et al (1964) Mortality in 1,100 consecutive burns treated at a burns unit. Ann Surg 159:396–401. https://doi.org/10.1097/00000658-196403000-00011

    Article  Google Scholar 

  2. O’Brien SP, Billmire DA (2008) Prevention and management of outpatient pediatric burns. J Craniofac Surg 19:1034–1039. https://doi.org/10.1097/SCS.0b013e318177217c

    Article  Google Scholar 

  3. Mazloom-Jalali A, Shariatinia Z, Tamai IA, Pakzad SR, Malakootikhah J (2020) Fabrication of chitosan-polyethylene glycol nanocomposite films containing ZIF-8 nanoparticles for application as wound dressing materials. Int J Biol Macromol 153:421–432. https://doi.org/10.1016/j.ijbiomac.2020.03.033

    Article  CAS  Google Scholar 

  4. Huang ZM, Zhang YZ, Kotaki M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. https://doi.org/10.1016/s0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  5. Li D, Xia YN (2004) Electrospinning of nanofibers: Reinventing the wheel? Adv Mater 16:1151–1170. https://doi.org/10.1002/adma.200400719

    Article  CAS  Google Scholar 

  6. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew Chem-Int Edit 46:5670–5703. https://doi.org/10.1002/anie.200604646

    Article  CAS  Google Scholar 

  7. Sill TJ, von Recum HA (2008) Electro spinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006. https://doi.org/10.1016/j.biomaterials.2008.01.011

    Article  CAS  Google Scholar 

  8. Reneker DH, Yarin AL, Fong H et al (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87:4531–4547. https://doi.org/10.1063/1.373532

    Article  CAS  Google Scholar 

  9. Wang J, Wang YM, Zhang YT et al (2016) Zeolitic imidazolate framework/graphene oxide hybrid nanosheets functionalized thin film nanocomposite membrane for enhanced antimicrobial performance. ACS Appl Mater Interfaces 8:25508–25519. https://doi.org/10.1021/acsami.6b06992

    Article  CAS  Google Scholar 

  10. Zhang YZ, Venugopal JR, El-Turki A et al (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322. https://doi.org/10.1016/j.biomaterials.2008.07.038

    Article  CAS  Google Scholar 

  11. Bao QL, Zhang H, Yang JX et al (2010) Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791. https://doi.org/10.1002/adfm.200901658

    Article  CAS  Google Scholar 

  12. Lee YH, Lee JH, An IG et al (2005) Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials 26:3165–3172. https://doi.org/10.1016/j.biomaterials.2004.08.018

    Article  CAS  Google Scholar 

  13. Saeed K, Park SY, Lee HJ et al (2006) Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer 47:8019–8025. https://doi.org/10.1016/j.polymer.2006.09.012

    Article  CAS  Google Scholar 

  14. Tijing LD, Ruelo MTG, Amarjargal A et al (2012) Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles. Chem Eng J 197:41–48. https://doi.org/10.1016/j.cej.2012.05.005

    Article  CAS  Google Scholar 

  15. Rogina A (2014) Electrospinning process: versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl Surf Sci 296:221–230. https://doi.org/10.1016/j.apsusc.2014.01.098

    Article  CAS  Google Scholar 

  16. Chen J, Huang XY, Sun B et al (2017) Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl Mater Interfaces 9:30909–30917. https://doi.org/10.1021/acsami.7b08061

    Article  CAS  Google Scholar 

  17. Mazinani S, Ajji A, Dubois C (2009) Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat. Polymer 50:3329–3342. https://doi.org/10.1016/j.polymer.2009.04.070

    Article  CAS  Google Scholar 

  18. Park KS, Ni Z, Cote AP et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 103:10186–10191. https://doi.org/10.1073/pnas.0602439103

    Article  CAS  Google Scholar 

  19. Lu G, Li SZ, Guo Z et al (2012) Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat Chem 4:310–316. https://doi.org/10.1038/nchem.1272

    Article  CAS  Google Scholar 

  20. Tang J, Salunkhe RR, Liu J et al (2015) Thermal conversion of core-shell metalorganic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc 137:1572–1580. https://doi.org/10.1021/ja511539a

    Article  CAS  Google Scholar 

  21. Kohsari I, Shariatinia Z, Pourmortazavi SM (2016) Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles. Int J Biol Macromol 91:778–788. https://doi.org/10.1016/j.ijbiomac.2016.06.039

    Article  CAS  Google Scholar 

  22. Chen JY, Zhang X, Huang C et al (2017) Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films. J Biomed Mater Res Part A 105:834–846. https://doi.org/10.1002/jbm.a.35960

    Article  CAS  Google Scholar 

  23. Ma WJ, Li YS, Zhang MJ et al (2020) Biomimetic durable multifunctional selfcleaning nanofibrous membrane with outstanding oil/water separation, photodegradation of organic contaminants, and antibacterial performances. ACS Appl Mater Interfaces 12:34999–35010. https://doi.org/10.1021/acsami.0c09059

    Article  CAS  Google Scholar 

  24. Mazloom-Jalali A, Shariatinia Z, Tamai IA et al (2020) Fabrication of chitosanpolyethylene glycol nanocomposite films containing ZIF-8 nanoparticles for application as wound dressing materials. Int J Biol Macromol 153:421–432. https://doi.org/10.1016/j.ijbiomac.2020.03.033

    Article  CAS  Google Scholar 

  25. Fu H, Ou PF, Zhu J, Song PF, Yang JQ, Wu Y (2019) Enhanced protein adsorption in fibrous substrates treated with zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. ACS Appl Nano Mater 2:7626–7636. https://doi.org/10.1021/acsanm.9b01717

    Article  CAS  Google Scholar 

  26. Neelakanda P, Barankova E, Peinemann KV (2016) Polymer supported ZIF-8 membranes by conversion of sputtered zinc oxide layers. Micropor Mesopor Mat 220:215–219. https://doi.org/10.1016/j.micromeso.2015.08.038

    Article  CAS  Google Scholar 

  27. Peterson GW, Lee DT, Barton HF et al (2021) Fibre-based composites from the integration of metal-organic frameworks and polymers. Nat Rev Mater 6:605–621. https://doi.org/10.1038/s41578-021-00291-2

    Article  CAS  Google Scholar 

  28. Niethammer P, Grabher C, Look AT et al (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459:996-U123. https://doi.org/10.1038/nature08119

    Article  CAS  Google Scholar 

  29. Liu XF, Zhang J, Liu JJ et al (2020) Bifunctional CuS composite nanofibers via in situ electrospinning for outdoor rapid hemostasis and simultaneous ablating superbug. Chem Eng J 401:12. https://doi.org/10.1016/j.cej.2020.126096

    Article  CAS  Google Scholar 

  30. Miao WZ, Wang J, Liu JD et al (2018) Self-cleaning and antibacterial zeolitic imidazolate framework coatings. Adv Mater Interfaces 5:9. https://doi.org/10.1002/admi.201800167

    Article  CAS  Google Scholar 

  31. Zhang SX, Zhang XN, Zhao CL et al (2010) Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater 6:626–640. https://doi.org/10.1016/j.actbio.2009.06.028

    Article  CAS  Google Scholar 

  32. Fukunaga M (2005) Expression of D2–40 in lymphatic endothelium of normal tissues and in vascular tumours. Histopathology 46:396–402. https://doi.org/10.1111/j.1365-2559.2005.02098.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11904193 and 51973100), the National Key Research and Development Project of China (2019YFC0121402), and the State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University (RZ2000003334 and G2RC202022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Ze Long.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, XH., Zhang, J., Cheng, GT. et al. Dual antibacterial polypeptide-coated PCL@ZIF-8 nanofiber reduces infection and inflammation in burn wounds. J Mater Sci 57, 3678–3687 (2022). https://doi.org/10.1007/s10853-021-06832-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06832-y

Navigation