Skip to main content
Log in

Synthesis of ZnO/Ti2C composites by electrostatic self-assembly for the photocatalytic degradation of methylene blue

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) zinc oxide (ZnO) has great potential in the field of dye photocatalytic degradation. However, the photocatalytic activity is always unsatisfactory because of its small specific surface area and high carrier recombination rate. In this study, peony flower-like ZnO/Ti2C (2 wt% ZnO/Ti2C) composites were successfully prepared by simple electrostatic self-assembly method with morphology design and content adjustment of MXene Ti2C. The prepared materials displayed excellent photocatalytic degradation activity and photocorrosion resistance of methylene blue (MB) dye. After 120 min UV irradiation, the degradation rate reached 99.16%, and the apparent rate constant k was 0.03926 min−1, which was 14.76 times higher than that of pure ZnO. The photocatalytic activity almost did not decrease after 4 cycles. The introduction of Ti2C promoted the formation of tightly interfacial coupling between ZnO and Ti2C, which shortens the path of carrier transfer and promoted the direct transfer of photogenerated electrons from the valence band of ZnO to Ti2C. The specific surface area of hybrids showed distinct enlargement simultaneously, which was a benefit for enhancing the UV absorption capacity of ZnO/Ti2C composites. Meaningfully, this study provides a feasible design strategy for improving the degradation performance of 2D photocatalysts, which can provide a technical proposal for the modification design of other photocatalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Abbas KN, Bidin N (2017) Morphological driven photocatalytic activity of ZnO nanostructures. Appl Surf Sci 394:498–508. https://doi.org/10.1016/j.apsusc.2016.10.080

    Article  CAS  Google Scholar 

  2. Chen Q, Wang H, Luan Q, Duan R, Cao X, Fang Y, Ma D, Guan R, Hu X (2020) Synergetic effects of defects and acid sites of 2D-ZnO photocatalysts on the photocatalytic performance. J Hazard Mater 385:121527. https://doi.org/10.1016/j.jhazmat.2019.121527

    Article  CAS  Google Scholar 

  3. Thatikayala D, Banothu V, Kim J, Shin DS, Vijayalakshmi S, Park J (2020) Enhanced photocatalytic and antibacterial activity of ZnO/Ag nanostructure synthesized by tamarindus indica pulp extract. J Mater Sci-Mater El 31(7):5324–5335. https://doi.org/10.1007/s10854-020-03093-4

    Article  CAS  Google Scholar 

  4. Abesh B, Sayan C, Avirup K, Rajendra K (2019) Vertically aligned zinc oxide nanosheet for high-performance photocatalysis of water pollutants. Ceram Int 45:16821–16828. https://doi.org/10.1016/j.ceramint.2019.05.223

    Article  CAS  Google Scholar 

  5. Oppong SO-B, Opoku F, Anku WW, Govender PP (2021) Insights into the complementary behaviour of Gd doping in GO/Gd/ZnO composites as an efficient candidate towards photocatalytic degradation of indigo carmine dye. J Mater Sci 56(14):8511–8527. https://doi.org/10.1007/s10853-021-05846-w

    Article  CAS  Google Scholar 

  6. Gao S, Yang W, Xiao J, Li B, Li Q (2019) Creation of passivated Nb/N p-n co-doped ZnO nanoparticles and their enhanced photocatalytic performance under visible light illumination. J Mater Sci Technol 35(4):610–614. https://doi.org/10.1016/j.jmst.2018.09.056

    Article  Google Scholar 

  7. Ma R, Pathak R, Zheng D, Zhang Y, Xing J, Liu J, Jiang Y, Xiao M, Wu F (2021) Preparation and photoelectrochemical properties of hierarchical heterostructure ZnO/CuO array. Appl Phys A-Mater 127(2):100. https://doi.org/10.1007/s00339-020-04242-6

    Article  CAS  Google Scholar 

  8. Liu Y, Zhang Q, Yuan H, Luo K, Li J, Hu W, Pan Z, Xu M, Xu S, Levchenko I, Bazaka K (2021) Comparative study of photocatalysis and gas sensing of ZnO/Ag nanocomposites synthesized by one- and two-step polymer-network gel processes. J Alloy Compd 868:158723. https://doi.org/10.1016/j.jallcom.2021.158723

    Article  CAS  Google Scholar 

  9. Fernando JFS, Shortell MP, Firestein KL, Zhang C, Larionov KV, Popov ZI, Sorokin PB, Bourgeois L, Waclawik ER, Golberg DV (2018) Photocatalysis with Pt-Au-ZnO and Au-ZnO Hybrids: effect of charge accumulation and discharge properties of metal nanoparticles. Langmuir 34(25):7334–7345. https://doi.org/10.1021/acs.langmuir.8b00401

    Article  CAS  Google Scholar 

  10. Zhai H, Wang L, Sun D, Zhang Q, Lin X, Li X, Yang J, Chang L, Li X (2015) Facile synthesis of Pd-ZnO microhole composites with enhanced photocatalysis and its photoluminescence properties. Catal Lett 145(4):1041–1046. https://doi.org/10.1007/s10562-015-1481-z

    Article  CAS  Google Scholar 

  11. De Corrado JM, Fernando JFS, Shortell MP, Poad BLJ, Blanksby SJ, Waclawik ER (2019) ZnO colloid crystal facet-type determines both Au photodeposition and photocatalytic activity. ACS Appl Nano Mater 2(12):7856–7869. https://doi.org/10.1021/acsanm.9b01864

    Article  CAS  Google Scholar 

  12. Wu X, Lu C, Liu J, Song S, Sun C (2017) Constructing efficient solar light photocatalytic system with Ag-introduced carbon nitride for organic pollutant elimination. Appl Catal B-Environ 217:232–240. https://doi.org/10.1016/j.apcatb.2017.06.001

    Article  CAS  Google Scholar 

  13. Fang H, Pan Y, Yin M, Pan C (2019) Enhanced visible light photocatalytic activity of CdS with alkalized Ti3C2 nano-sheets as co-catalyst for degradation of rhodamine B. J Mater Sci- Mater El 30(16):14954–14966. https://doi.org/10.1007/s10854-019-01868-y

    Article  CAS  Google Scholar 

  14. Wang H, Peng R, Hood ZD, Naguib M, Adhikari SP, Wu Z (2016) Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. Chemsuschem 9(12):1490–1497. https://doi.org/10.1002/cssc.201600165

    Article  CAS  Google Scholar 

  15. Hu A, Yu J, Zhao H, Zhang H, Li W (2020) One-step synthesis for cations intercalation of two-dimensional carbide crystal Ti3C2 MXene. Appl Surf Sci 505:144538. https://doi.org/10.1016/j.apsusc.2019.144538

    Article  CAS  Google Scholar 

  16. Wu J, Wang Y, Zhang Y, Meng H, Xu Y, Han Y, Wang Z, Dong Y, Zhang X (2020) Highly safe and ionothermal synthesis of Ti3C2 MXene with expanded interlayer spacing for enhanced lithium storage. J Energy Chem 47:203–209. https://doi.org/10.1016/j.jechem.2019.11.029

    Article  Google Scholar 

  17. Dillon AD, Ghidiu MJ, Krick AL, Griggs J, May SJ, Gogotsi Y, Barsoum MW, Fafarman AT (2016) Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv Funct Mater 26(23):4162–4168. https://doi.org/10.1002/adfm.201600357

    Article  CAS  Google Scholar 

  18. Zhao R, Di H, Hui X, Zhao D, Wang R, Wang C, Yin L (2020) Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ Sci 13(1):246–257. https://doi.org/10.1039/c9ee03250a

    Article  CAS  Google Scholar 

  19. Fang Y, Cao Y, Chen Q (2019) Synthesis of an Ag2WO4/Ti3C2 schottky composite by electrostatic traction and its photocatalytic activity. Ceram Int 45(17):22298–22307. https://doi.org/10.1016/j.ceramint.2019.07.256

    Article  CAS  Google Scholar 

  20. Tang R, Xiong S, Gong D, Deng Y, Wang Y, Su L, Ding C, Yang L, Liao C (2020) Ti3C2 2D MXene: recent progress and perspectives in photocatalysis. ACS Appl Mater Interfaces 12(51):56663–56680. https://doi.org/10.1021/acsami.0c12905

    Article  CAS  Google Scholar 

  21. Khazaei M, Arai M, Sasaki T, Chung C-Y, Venkataramanan NS, Estili M, Sakka Y, Kawazoe Y (2013) Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mater 23(17):2185–2192. https://doi.org/10.1002/adfm.201202502

    Article  CAS  Google Scholar 

  22. Ul Haq Y, Murtaza I, Mazhar S, Ahmad N, Qarni AA, Ul Haq Z, Khan SA, Iqbal M (2020) Investigation of improved dielectric and thermal properties of ternary nanocomposite PMMA/MXene/ZnO fabricated by in-situ bulk polymerization. J Appl Polym Sci 137(40):49197. https://doi.org/10.1002/app.49197

    Article  CAS  Google Scholar 

  23. Cao Y, Deng Q, Liu Z, Shen D, Wang T, Huang Q, Du S, Jiang N, Lin CT, Yu J (2017) Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC Adv 7(33):20494–20501. https://doi.org/10.1039/c7ra00184c

    Article  CAS  Google Scholar 

  24. Mashtalir O, Naguib M, Mochalin VN, Dall’Agnese Y, Heon M, Barsoum MW, Gogotsi Y (2013) Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 4:1716. https://doi.org/10.1038/ncomms2664

    Article  CAS  Google Scholar 

  25. Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153):1502–1505. https://doi.org/10.1126/science.1241488

    Article  CAS  Google Scholar 

  26. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW (2014) Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516(7529):78–81. https://doi.org/10.1038/nature13970

    Article  CAS  Google Scholar 

  27. Babar ZUD, Anwar MS, Mumtaz M, Iqbal M, Zheng R-K, Akinwande D, Rizwan S (2020) Peculiar magnetic behaviour and Meissner effect in two-dimensional layered Nb2C MXene. 2D Mater. https://doi.org/10.1088/2053-1583/ab86d2

    Article  Google Scholar 

  28. Zu D, Song H, Wang Y, Chao Z, Li Z, Wang G, Shen Y, Li C, Ma J (2020) One-pot in-situ hydrothermal synthesis of CdS/Nb2O5/Nb2C heterojunction for enhanced visible-light-driven photodegradation. Appl Catal B-Environ 277:119140. https://doi.org/10.1016/j.apcatb.2020.119140

    Article  CAS  Google Scholar 

  29. Song T, Hou L, Long B, Ali A, Deng GJ (2021) Ultrathin MXene “bridge” to accelerate charge transfer in ultrathin metal-free 0D/2D black phosphorus/g-C3N4 heterojunction toward photocatalytic hydrogen production. J Colloid Interface Sci 584:474–483. https://doi.org/10.1016/j.jcis.2020.09.103

    Article  CAS  Google Scholar 

  30. Zhang T, Pan L, Tang H, Du F, Guo Y, Qiu T, Yang J (2017) Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: enhanced exfoliation and delamination. J Alloy Compd 695:818–826. https://doi.org/10.1016/j.jallcom.2016.10.127

    Article  CAS  Google Scholar 

  31. Ran J, Gao G, Li FT, Ma TY, Du A, Qiao SZ (2017) Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:13907. https://doi.org/10.1038/ncomms13907

    Article  CAS  Google Scholar 

  32. Peng C, Wei P, Chen X, Zhang Y, Zhu F, Cao Y, Wang H, Yu H, Peng F (2018) A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): enhanced exfoliation and improved adsorption performance. Ceram Int 44(15):18886–18893. https://doi.org/10.1016/j.ceramint.2018.07.124

    Article  CAS  Google Scholar 

  33. Feng X, Yu Z, Sun Y, Long R, Shan M, Li X, Liu Y, Liu J (2021) Review MXenes as a new type of nanomaterial for environmental applications in the photocatalytic degradation of water pollutants. Ceram Int 47(6):7321–7343. https://doi.org/10.1016/j.ceramint.2020.11.151

    Article  CAS  Google Scholar 

  34. Ke T, Shen S, Rajavel K, Yang K, Lin D (2021) In situ growth of TiO2 nanoparticles on nitrogen-doped Ti3C2 with isopropyl amine toward enhanced photocatalytic activity. J Hazard Mater 402:124066. https://doi.org/10.1016/j.jhazmat.2020.124066

    Article  CAS  Google Scholar 

  35. Lin HJ, Mo QL, Xu S, Wei ZQ, Fu XY, Lin X, Xiao FX (2020) Unlocking photoredox selective organic transformation over metal-free 2D transition metal chalcogenides-MXene heterostructures. J Catal 391:485–496. https://doi.org/10.1016/j.jcat.2020.09.011

    Article  CAS  Google Scholar 

  36. Liu C, Xu Q, Zhang Q, Zhu Y, Ji M, Tong Z, Hou W, Zhang Y, Xu J (2018) Layered BiOBr/Ti3C2 MXene composite with improved visible-light photocatalytic activity. J Mater Sci 54(3):2458–2471. https://doi.org/10.1007/s10853-018-2990-0

    Article  CAS  Google Scholar 

  37. Cao S, Shen B, Tong T, Fu J, Yu J (2018) 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv Funct Mater 28(21):1800136. https://doi.org/10.1002/adfm.201800136

    Article  CAS  Google Scholar 

  38. Khadidja MF, Fan J, Li S, Li S, Cui K, Wu J, Zeng W, Wei H, Jin HG, Naik N, Chao Z, Pan D, Guo Z (2021) Hierarchical ZnO/MXene composites and their photocatalytic performances. Colloid Surface A 628:127230. https://doi.org/10.1016/j.colsurfa.2021.127230

    Article  CAS  Google Scholar 

  39. Sreedhar A, Noh JS (2021) Interfacial engineering insights of promising monolayer 2D Ti3C2 MXene anchored flake-like ZnO thin films for improved PEC water splitting. J Electroanal Chem 883:115044. https://doi.org/10.1016/j.jelechem.2021.115044

    Article  CAS  Google Scholar 

  40. Zhou W, Li K, Zhu J, Tian S (2018) Rapid synthesis of highly pure Nb2AlC using the spark plasma sintering technique. J Phys Chem Solids 120:218–222. https://doi.org/10.1016/j.jpcs.2018.04.029

    Article  CAS  Google Scholar 

  41. Nie N, Zhang L, Fu J, Cheng B, Yu J (2018) Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance. Appl Surf Sci 441:12–22. https://doi.org/10.1016/j.apsusc.2018.01.193

    Article  CAS  Google Scholar 

  42. Shao M, Shao Y, Chai J, Qu Y, Yang M, Wang Z, Yang M, Ip WF, Kwok CT, Shi X, Lu Z, Wang S, Wang X, Pan H (2017) Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. J Mater Chem A 5(32):16748–16756. https://doi.org/10.1039/c7ta04122e

    Article  CAS  Google Scholar 

  43. Low J, Zhang L, Tong T, Shen B, Yu J (2018) TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J Catal 361:255–266. https://doi.org/10.1016/j.jcat.2018.03.009

    Article  CAS  Google Scholar 

  44. Xu H, Chen X, Ouyang S, Kako T, Ye J (2012) Size-dependent mie’s scattering effect on TiO2 spheres for the superior photoactivity of H2 evolution. J Phys Chem C 116(5):3833–3839. https://doi.org/10.1021/jp209378t

    Article  CAS  Google Scholar 

  45. Wu S, Zhao HJ, Li CF, Liu J, Dong W, Zhao H, Wang C, Liu Y, Hu ZY, Chen L, Li Y, Su BL (2019) Type II heterojunction in hierarchically porous zinc oxide/graphitic carbon nitride microspheres promoting photocatalytic activity. J Colloid Interf Sci 538:99–107. https://doi.org/10.1016/j.jcis.2018.11.076

    Article  CAS  Google Scholar 

  46. Zhuge ZH, Liu XJ, Chen TQ, Gong YY, Li C, Niu LY, Xu SQ, Xu XT, Alothman ZA, Sun CQ, Shapter JG, Yamauchii Y (2021) Highly efficient photocatalytic degradation of different hazardous contaminants by CaIn2S4-Ti3C2Tx Schottky heterojunction: an experimental and mechanism study. Ceram Int. https://doi.org/10.1016/j.cej.2020.127838

    Article  Google Scholar 

  47. Liu BB, Liu XJ, Liu JY, Feng CJ, Li Z, Li C, Gong YY, Pan LK, Xu SQ, Q. Sun C, (2018) Efficient charge separation between UiO-66 and ZnIn2S4 flowerlike 3D microspheres for photoelectronchemical properties. Appl Catal B-Environ 226:234–241. https://doi.org/10.1016/j.apcatb.2017.12.052

    Article  CAS  Google Scholar 

  48. Tayyebi A, Soltani T, Lee BK, Outokesh M, Tayebi M (2017) Novel visible light photocatalytic and photoelectrochemical (PEC) Activity of carbon-doped zinc oxide/reduced graphene oxide: supercritical methanol synthesis with enhanced photocorrosion suppression. J Alloy Compd 723:1001–1010. https://doi.org/10.1016/j.jallcom.2017.06.316

    Article  CAS  Google Scholar 

  49. Zhang Y, Chen Z, Liu S, Xu YJ (2013) Size effect induced activity enhancement and anti-photocorrosion of reduced graphene oxide/ZnO composites for degradation of organic dyes and reduction of Cr(VI) in water. Appl Catal B-Environ 140–141:598–607. https://doi.org/10.1016/j.apcatb.2013.04.059

    Article  CAS  Google Scholar 

  50. Cao XF, Yue P, Wei QR, Dang YF, Zhang SQ, Wei ZX, Wang RZ (2021) Synthesis, characterization and catalytic performance of magnetic La0.7Sr0.3MnO3/α-Fe2O3 with p-n heterojunction structure. J Mater Sci. https://doi.org/10.1007/s10853-021-05788-3

    Article  Google Scholar 

  51. Peng C, Yang XF, Li YH, Yu H, Wang HJ, Peng F (2016) Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl Mater Interfaces 8(9):6051–6060. https://doi.org/10.1021/acsami.5b11973

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 51772230) and the High Technology Program of Hubei Province (No. 2019AAA031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibing Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Yu, B., Zhu, J. et al. Synthesis of ZnO/Ti2C composites by electrostatic self-assembly for the photocatalytic degradation of methylene blue. J Mater Sci 57, 3954–3970 (2022). https://doi.org/10.1007/s10853-021-06798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06798-x

Navigation