Skip to main content
Log in

A critical review on spark plasma sintering of copper and its alloys

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Copper and its alloys have been in the service of humankind earlier than any other metal throughout history. In the present review, all aspects of the SPS of copper and its alloys are comprehensively investigated, and their potential effects on the microstructure and properties of alloys are thoroughly reviewed. In this regard, the densification phenomenon during SPS treatment is fully investigated. The effects of raw powder characteristics involving particle size, contamination content, and powder morphology on the sinterability of these materials are examined. Then, the influence of SPS operation parameters consisting of pressure, heating rate, dwelling time, pulsed electrical current, electrical pulses pattern, sintering temperature, and sintering tooling on densification of these materials is extensively discussed. Furthermore, the microstructure evolution and grain growth behaviors during SPS are explored. In addition, current challenges and future perspectives of this field are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Junwei L, Yong L, Shiqiang L, Jun W, Wenliang G (2021) Study on the process characteristics of vacuum hot pressing sintering of TiNiNb alloy based on “near net shape forming.” Mater Lett 294:129758. https://doi.org/10.1016/j.matlet.2021.129758

    Article  CAS  Google Scholar 

  2. Chang S-H, Chang H-C, Huang K-T (2021) Evaluation of the strengthening mechanism and mechanical properties of high alloyed PM 23−NbC–TaC composite materials through vacuum sintering, sub-zero and heat treatments. Vacuum 187:110132. https://doi.org/10.1016/j.vacuum.2021.110132

    Article  CAS  Google Scholar 

  3. Yang Y, Luo XY, Ma TX, Wen LY, Hu LW, Hu ML (2021) Effect of Al on characterization and properties of AlxCoCrFeNi high entropy alloy prepared via electro-deoxidization of the metal oxides and vacuum hot pressing sintering process. J Alloys Compd 864:158717. https://doi.org/10.1016/j.jallcom.2021.158717

    Article  CAS  Google Scholar 

  4. Tian LX, Zheng RX, Yuan CQ, Yang G, Shi C, Zhang BY, Zhang Z (2021) Effect of grain size on the corrosion behavior of fully recrystallized ultra-fine grained 316L stainless steel fabricated by high-energy ball milling and hot isostatic pressing sintering. Mater Charact 174:110995. https://doi.org/10.1016/j.matchar.2021.110995

    Article  CAS  Google Scholar 

  5. Blais C (2010) Atmosphere sintering. In: Fang ZZ (ed) Sintering of advanced materials. Woodhead Publishing, Cambridge, pp 165–188. https://doi.org/10.1533/9781845699949.2.165

    Chapter  Google Scholar 

  6. Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Rathel J, Herrmann M (2014) Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater 16(7):830–849. https://doi.org/10.1002/adem.201300409

    Article  CAS  Google Scholar 

  7. Torosyan KS, Sedegov AS, Kuskov KV, Abedi M, Arkhipov DI, Kiryukhantsev-Korneev PV, Vorotilo S, Moskovskikh DO, Mukasyan AS (2019) Reactive, nonreactive, and flash spark plasma sintering of Al2O3/SiC composites—a comparative study. J Am Ceram Soc 103(1):520–530. https://doi.org/10.1111/jace.16734

    Article  CAS  Google Scholar 

  8. Franceschin G, Flores-Martinez N, Vázquez-Victorio G, Ammar S, Valenzuela R (2018) Sintering and reactive sintering by spark plasma sintering (SPS). In: Shishkovsky I (ed) Sintering of functional materials. IntechOpen, London, pp 123–146. https://doi.org/10.5772/intechopen.68871

    Chapter  Google Scholar 

  9. Antou G, Guyot P, Pradeilles N, Vandenhende M, Maître A (2014) Identification of densification mechanisms of pressure-assisted sintering: application to hot pressing and spark plasma sintering of alumina. J Mater Sci 50(5):2327–2336. https://doi.org/10.1007/s10853-014-8804-0

    Article  CAS  Google Scholar 

  10. Abedi M, Moskovskikh DO, Rogachev AS, Mukasyan AS (2016) Spark plasma sintering of titanium spherical particles. Metall Mater Trans B 47(5):2725–2731. https://doi.org/10.1007/s11663-016-0732-8

    Article  CAS  Google Scholar 

  11. Riaz A, Witte K, Bodnar W, Hantusch M, Schell N, Springer A, Burkel E (2021) Structural changes and pseudo-piezoelectric behaviour of field assisted sintered calcium titanate. Materialia 15:100998. https://doi.org/10.1016/j.mtla.2021.100998

    Article  CAS  Google Scholar 

  12. Kudryashov VA, Godin SM, Vadchenko SG, Rogachev AS (2020) An experimental apparatus for modeling the processes of electric spark plasma sintering. Instrum Exp Tech 63(1):77–80. https://doi.org/10.1134/S0020441220010157

    Article  CAS  Google Scholar 

  13. Vityaz PA, Kaptsevich VM, Belyavin KE, Prezhina TE, Kerzhentseva LF, Govorov VG (1990) Contact formation during the electric-pulse sintering of a titanium-alloy powder. Sov Powder Metall Metal Ceram 29(7):527–529. https://doi.org/10.1007/BF00796064

    Article  Google Scholar 

  14. Doleker KM, Erdogan A, Zeytin S (2021) Laser re-melting influence on isothermal oxidation behavior of electric current assisted sintered CoCrFeNi, CoCrFeNiAl0.5 and CoCrFeNiTi0.5Al0.5 high entropy alloys. Surf Coat Tech 407:126775. https://doi.org/10.1016/j.surfcoat.2020.126775

    Article  CAS  Google Scholar 

  15. Ramirez-Vinasco D, Leon-Patino CA, Nanko M, Aguilar-Reyes EA (2021) Consolidation behaviour of Cu/AlN composites by pulse electric current sintering of copper-coated aluminium nitride precursors. Powder Technol 377:723–732. https://doi.org/10.1016/j.powtec.2020.09.044

    Article  CAS  Google Scholar 

  16. Kawakami Y, Sakamaki T, Misawa T, Endo K, Kawahara M (2020) Investigation of PECS current pass and temperature distribution on sintered Al–Cu eutectic alloy. J Jpn Soc Powder Powder Metall 67(11):649–655. https://doi.org/10.2497/jjspm.67.649

    Article  CAS  Google Scholar 

  17. Lee WH, Seong JG, Yoon YH, Jeong CH, Van Tyne CJ, Lee HG, Chang SY (2019) Synthesis of TiC reinforced Ti matrix composites by spark plasma sintering and electric discharge sintering: a comparative assessment of microstructural and mechanical properties. Ceram Int 45(7):8108–8114. https://doi.org/10.1016/j.ceramint.2019.01.062

    Article  CAS  Google Scholar 

  18. Liu JM, Huang RX, Zhang RB, Liu GH, Wang XL, Jia ZD, Wang LM (2020) Mechanism of flash sintering with high electric field: in the view of electric discharge and breakdown. Scripta Mater 187:93–96. https://doi.org/10.1016/j.scriptamat.2020.06.009

    Article  CAS  Google Scholar 

  19. Chaim R, Chevallier G, Weibel A, Estournes C (2018) Grain growth during spark plasma and flash sintering of ceramic nanoparticles: a review. J Mater Sci 53(5):3087–3105. https://doi.org/10.1007/s10853-017-1761-7

    Article  CAS  Google Scholar 

  20. Flaureau A, Weibel A, Chevallier G, Estournes C (2021) Study of the densification and grain growth mechanisms occurring during spark plasma sintering of different submicronic yttria-stabilized zirconia powders. J Eur Ceram Soc 41(6):3581–3594. https://doi.org/10.1016/j.jeurceramsoc.2021.01.032

    Article  CAS  Google Scholar 

  21. Tokita M (2013) Spark plasma sintering (SPS) method, systems, and applications. In: Somiya S (ed) Handbook of advanced ceramics, 2nd edn. Academic Press, Oxford, pp 1149–1177. https://doi.org/10.1016/B978-0-12-385469-8.00060-5

    Chapter  Google Scholar 

  22. Cologna M (2020) Use of field assisted sintering for innovation in nuclear ceramics manufacturing. In: Konings RJM, Stoller RE (eds) Comprehensive nuclear materials, 2nd edn. Elsevier, Oxford, pp 811–839. https://doi.org/10.1016/B978-0-12-803581-8.11734-5

    Chapter  Google Scholar 

  23. Park NJ, Lee SJ, Lee IS, Cho KS, Kim SJ (2004) Manufacturing of Cu-15.0Zn-8.1Al shape memory alloy using spark plasma sintering. Mater Sci Forum 449–452:1109–1112

    Article  Google Scholar 

  24. Saiprasad M, Atchayakumar R, Thiruppathi K, Raghuraman S (2016) Consolidation of copper and aluminium powders by spark plasma sintering. Iop Conf Ser-Mat Sci 149:012057. https://doi.org/10.1088/1757-899X/149/1/012057

    Article  Google Scholar 

  25. Fabregue D, Piallat J, Maire E, Jorand Y, Massardier-Jourdan V, Bonnefont G (2012) Spark plasma sintering of pure iron nanopowders by simple route. Powder Metall 55(1):76–79. https://doi.org/10.1179/1743290111y.0000000004

    Article  CAS  Google Scholar 

  26. Fang Q, Kang ZX, Gan YW, Long Y (2015) Microstructures and mechanical properties of spark plasma sintered Cu–Cr composites prepared by mechanical milling and alloying. Mater Des 88:8–15. https://doi.org/10.1016/j.matdes.2015.08.127

    Article  CAS  Google Scholar 

  27. Rogachev AS, Kuskov KV, Moskovskikh DO, Usenko AA, Orlov AO, Shkodich NF, Alymov MI, Mukasyan AS (2016) Effect of mechanical activation on thermal and electrical conductivity of sintered Cu, Cr, and Cu/Cr composite powders. Dokl Phys 61(6):257–260. https://doi.org/10.1134/S1028335816060082

    Article  CAS  Google Scholar 

  28. Shi KY, Xue LH, Yan YW, Zhao LJ (2016) Preparation and arc erosion characteristics of ultrafine crystalline CuCr50 alloy by MA-SPS. J Wuhan Univ Technol 31(5):1081–1085. https://doi.org/10.1007/s11595-016-1493-6

    Article  CAS  Google Scholar 

  29. Shkodich NF, Rogachev AS, Mukasyan AS, Moskovskikh DO, Kuskov KV, Schukin AS, Khomenko NY (2017) Preparation of copper–molybdenum nanocrystalline pseudoalloys using a combination of mechanical activation and spark plasma sintering techniques. Russ J Phys Chem B 11(1):173–179. https://doi.org/10.1134/s1990793116060269

    Article  CAS  Google Scholar 

  30. Cardoso KR, Izaias BD, Vieira LD, Bepe AM (2020) Mechanical alloying and spark plasma sintering of AlCrCuFeZn high entropy alloy. Mater Sci Technol 36(17):1861–1869. https://doi.org/10.1080/02670836.2020.1839195

    Article  CAS  Google Scholar 

  31. Buinevich VS, Nepapushev AA, Moskovskikh DO, Trusov GV, Kuskov KV, Mukasyan AS (2021) Mechanochemical synthesis and spark plasma sintering of hafnium carbonitride ceramics. Adv Powder Technol 32(2):385–389. https://doi.org/10.1016/j.apt.2020.12.018

    Article  CAS  Google Scholar 

  32. Azevedo HVSB, Raimundo RA, Silva DDS, Morais LMF, Macedo DA, Cavalcante DGL, Gomes UU (2021) Microstructure and mechanical properties of Al2O3–WC–Co composites obtained by spark plasma sintering. Int J Refract Met H 94:105408. https://doi.org/10.1016/j.ijrmhm.2020.105408

    Article  CAS  Google Scholar 

  33. Krotkevich DG, Kashkarov EB, Syrtanov MS, Murashkina TL, Lider AM, Schmiedeke S, Travitzky N (2021) Preceramic paper-derived Ti3Al(Si)C2-based composites obtained by spark plasma sintering. Ceram Int 47(9):12221–12227. https://doi.org/10.1016/j.ceramint.2021.01.070

    Article  CAS  Google Scholar 

  34. Sabahi Namini A, Delbari SA, Shahedi Asl M, Le QV, Shokouhimehr M (2021) Characterization of reactive spark plasma sintered (Zr, Ti)B2–ZrC–SiC composites. J Taiwan Inst Chem Eng 119:187–195. https://doi.org/10.1016/j.jtice.2021.02.020

    Article  CAS  Google Scholar 

  35. Szutkowska M, Podsiadlo M, Sadowski T, Figiel P, Boniecki M, Pietras D, Polczyk T (2021) A novel approach by spark plasma sintering to the improvement of mechanical properties of titanium carbonitride-reinforced alumina ceramics. Molecules 26(5):1344. https://doi.org/10.3390/molecules26051344

    Article  CAS  Google Scholar 

  36. Wang YR, Wang XQ, Liu CB, Su XP, Yu CY, Su YJ, Qiao LJ, Bai Y (2021) Aluminum titanate based composite porous ceramics with both high porosity and mechanical strength prepared by a special two-step sintering method. J Alloys Compd 853:157193. https://doi.org/10.1016/j.jallcom.2020.157193

    Article  CAS  Google Scholar 

  37. Massoni N, Le Gallet S, Campayo L, Koch RJ, Misture ST, Grandjean A, Bernard F (2021) Densification of non-radioactive porous siliceous particles loaded with cesium potassium copper hexacyanoferrate by spark plasma sintering. J Eur Ceram Soc 41(2):1506–1513. https://doi.org/10.1016/j.jeurceramsoc.2020.10.024

    Article  CAS  Google Scholar 

  38. Galatanu M, Enculescu M, Galatanu A (2018) High temperature thermo-physical properties of SPS-ed W–Cu functional gradient materials. Mater Res Express 5(2):026502. https://doi.org/10.1088/2053-1591/aaa860

    Article  CAS  Google Scholar 

  39. Tan C, Wang GY, Ji LN, Tong YG, Duan XM (2016) Investigation on 316L/W functionally graded materials fabricated by mechanical alloying and spark plasma sintering. J Nucl Mater 469:32–38. https://doi.org/10.1016/j.jnucmat.2015.11.024

    Article  CAS  Google Scholar 

  40. Grasso S, Tatarko P, Rizzo S, Porwal H, Hu C, Katoh Y, Salvo M, Reece MJ, Ferraris M (2014) Joining of β-SiC by spark plasma sintering. J Eur Ceram Soc 34(7):1681–1686. https://doi.org/10.1016/j.jeurceramsoc.2013.12.023

    Article  CAS  Google Scholar 

  41. Miriyev A, Stern A, Tuval E, Kalabukhov S, Hooper Z, Frage N (2013) Titanium to steel joining by spark plasma sintering (SPS) technology. J Mater Process Technol 213(2):161–166. https://doi.org/10.1016/j.jmatprotec.2012.09.017

    Article  CAS  Google Scholar 

  42. Lei CX, Du Y, Zhu M, Huo WT, Wu H, Zhang YS (2021) Microstructure and mechanical properties of in situ TiC/Ti composites with a laminated structure synthesized by spark plasma sintering. Mater Sci Eng A 812:141136. https://doi.org/10.1016/j.msea.2021.141136

    Article  CAS  Google Scholar 

  43. Ding H, Cui XP, Gao NN, Sun Y, Zhang YY, Huang LJ, Geng L (2021) Fabrication of (TiB/Ti)-TiAl composites with a controlled laminated architecture and enhanced mechanical properties. J Mater Sci Technol 62:221–233. https://doi.org/10.1016/j.jmst.2020.06.011

    Article  Google Scholar 

  44. Orru R, Licheri R, Locci AM, Cincotti A, Cao GC (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mat Sci Eng R 63(4–6):127–287. https://doi.org/10.1016/j.mser.2008.09.003

    Article  CAS  Google Scholar 

  45. Aleksandrova EV, Ilyina AM, Grigoryev EG, Olevsky EA, Bordia R (2015) Contribution of electric current into densification kinetics during spark plasma sintering of conductive powder. J Am Ceram Soc 98(11):3509–3517. https://doi.org/10.1111/jace.13816

    Article  CAS  Google Scholar 

  46. Meaden GT (1965) Electrical resistance of metals. Springer US, Boston. https://doi.org/10.1007/978-1-4899-5717-7_2

    Book  Google Scholar 

  47. Portier RA, Ochin P, Pasko A, Monastyrsky GE, Gilchuk AV, Kolomytsev VI, Koval YN (2013) Spark plasma sintering of Cu–Al–Ni shape memory alloy. J Alloys Compd 577:S472–S477. https://doi.org/10.1016/j.jallcom.2012.02.145

    Article  CAS  Google Scholar 

  48. Ross RB (1992) Metallic materials specification handbook. Springer US, Boston. https://doi.org/10.1007/978-1-4615-3482-2_14

    Book  Google Scholar 

  49. Gale WF (2004) General physical properties. In: Gale WF, Totemeier TC (eds) Smithells metals reference book, 8th edn. Butterworth-Heinemann, Oxford, pp 14–11–14–45. https://doi.org/10.1016/B978-075067509-3/50017-8

    Chapter  Google Scholar 

  50. Wright RN (2016) Wire technology: process engineering and metallurgy, 2nd edn. Butterworth-Heinemann, Oxford. https://doi.org/10.1016/B978-0-12-802650-2.00019-4

    Book  Google Scholar 

  51. Sule R, Olubambi PA, Sigalas I, Asante JKO, Garrett JC (2014) Effect of SPS consolidation parameters on submicron Cu and Cu–CNT composites for thermal management. Powder Technol 258:198–205. https://doi.org/10.1016/j.powtec.2014.03.034

    Article  CAS  Google Scholar 

  52. Monnier J, Champion Y, Perriere L, Villeroy B, Godart C (2015) Spark plasma sintering and hydrogen pre-annealing of copper nanopowder. Mater Sci Eng A 621:61–67. https://doi.org/10.1016/j.msea.2014.10.040

    Article  CAS  Google Scholar 

  53. White GK (1991) Thermal conductivity at 273–300 K. In: Madelung O, White GK (eds) Thermal conductivity of pure metals and alloys. Springer, Berlin, Heidelberg, pp 6–9. https://doi.org/10.1007/10031435_3

    Chapter  Google Scholar 

  54. Ritasalo R, Cura ME, Liu XW, Söderberg O, Ritvonen T, Hannula SP (2010) Spark plasma sintering of submicron-sized Cu-powder—influence of processing parameters and powder oxidization on microstructure and mechanical properties. Mater Sci Eng A 527(10–11):2733–2737. https://doi.org/10.1016/j.msea.2010.01.008

    Article  CAS  Google Scholar 

  55. Wen H, Topping TD, Isheim D, Seidman DN, Lavernia EJ (2013) Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Mater 61(8):2769–2782. https://doi.org/10.1016/j.actamat.2012.09.036

    Article  CAS  Google Scholar 

  56. Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad HR (2015) Microstructure and corrosion behaviour of Cu–Al–Ni shape memory alloys with Ag nanoparticles. Mater Corros 66(6):527–534. https://doi.org/10.1002/maco.201407658

    Article  CAS  Google Scholar 

  57. Vajpai SK, Dube RK, Sangal S (2011) Processing and characterization of Cu–Al–Ni shape memory alloy strips prepared from prealloyed powder by hot densification rolling of powder preforms. Metall Mater Trans A 42a(10):3178–3189. https://doi.org/10.1007/s11661-011-0728-6

    Article  CAS  Google Scholar 

  58. Ji XB, Chen YX, Quan YL, Shen ZY (2016) Tribological performance of CuPb alloy under seawater lubrication. Tribol Trans 59(3):502–506. https://doi.org/10.1080/10402004.2015.1088992

    Article  CAS  Google Scholar 

  59. Sharma AS, Biswas K, Basu B, Chakravarty D (2011) Spark plasma sintering of nanocrystalline Cu and Cu-10 Wt Pct Pb alloy. Metall Mater Trans A 42(7):2072–2084. https://doi.org/10.1007/s11661-010-0589-4

    Article  CAS  Google Scholar 

  60. Shi KY, Xue LH, Yan YW, Shen T (2013) Effects of mechanical alloying parameters on the microstructures of nanocrystalline Cu-5 wt% Cr alloy. J Wuhan Univ Technol 28(1):192–195. https://doi.org/10.1007/s11595-013-0663-z

    Article  CAS  Google Scholar 

  61. Shan L, Wang X, Wang Y (2020) Extension of solid solubility and structural evolution in nano-structured Cu–Cr solid solution induced by high-energy milling. Materials 13(23):1–12. https://doi.org/10.3390/ma13235532

    Article  CAS  Google Scholar 

  62. Chakraborty S, Gupta A, Roy D, Basumallick A (2019) Studies on nano-metal dispersed Cu–Cr matrix composite. Mater Lett 257:126739. https://doi.org/10.1016/j.matlet.2019.126739

    Article  CAS  Google Scholar 

  63. Wei X, Yu DM, Sun ZB, Yang ZM, Song XP, Ding BJ (2014) Arc characteristics and microstructure evolution of W–Cu contacts during the vacuum breakdown. Vacuum 107:83–89. https://doi.org/10.1016/j.vacuum.2014.04.005

    Article  CAS  Google Scholar 

  64. Lungu MV, Lucaci M, Tsakiris V, Brǎtulescu A, Cîrstea CD, Marin M, Pǎtroi D, Mitrea S, Marinescu V, Grigore F, Tǎlpeanu D, Stancu N, Godeanu P, Melnic C (2017) Development and investigation of tungsten copper sintered parts for using in medium and high voltage switching devices. In: Paper presented at the IOP conference series: materials science and engineering, https://doi.org/10.1088/1757-899X/209/1/012012

  65. Zhou YX, Xue YL, Zhou K (2019) Failure analysis of arc ablated tungsten-copper electrical contacts. Vacuum 164:390–395. https://doi.org/10.1016/j.vacuum.2019.03.052

    Article  CAS  Google Scholar 

  66. Chen QY, Liang SH, Wang F, Zhuo LC (2018) Microstructural investigation after vacuum electrical breakdown of the W-30wt.%Cu contact material. Vacuum 149:256–261. https://doi.org/10.1016/j.vacuum.2018.01.004

    Article  CAS  Google Scholar 

  67. Klinger L, Rabkin E (2013) Sintering of spherical particles of two immiscible phases controlled by surface and interphase boundary diffusion. Acta Mater 61(7):2607–2616. https://doi.org/10.1016/j.actamat.2013.01.040

    Article  CAS  Google Scholar 

  68. Kumar A, Jayasankar K, Debata M, Mandal A (2015) Mechanical alloying and properties of immiscible Cu-20 wt.% Mo alloy. J Alloys Compd 647:1040–1047. https://doi.org/10.1016/j.jallcom.2015.06.129

    Article  CAS  Google Scholar 

  69. Kuskov KV, Abedi M, Moskovskikh DO, Serhiienko I, Mukasyan AS (2021) Comparison of conventional and flash spark plasma sintering of Cu–Cr pseudo-alloys: kinetics, structure, properties. Metals 11(1):141. https://doi.org/10.3390/met11010141

    Article  CAS  Google Scholar 

  70. Chakraborty S, Bagala R, Sikdar K, Roy D, Basumallick A (2020) Structure property relationship in a bulk Cu–Cr–W composite synthesized by high-energy ball milling and spark plasma sintering. Mater Chem Phys 256:123708. https://doi.org/10.1016/j.matchemphys.2020.123708

    Article  CAS  Google Scholar 

  71. Kim CK, Lee HS, Shin SY, Lee JC, Kim DH, Lee S (2005) Microstructure and mechanical properties of Cu-based bulk amorphous alloy billets fabricated by spark plasma sintering. Mater Sci Eng A 406(1–2):293–299. https://doi.org/10.1016/j.msea.2005.06.043

    Article  CAS  Google Scholar 

  72. Kim CK, Lee S, Shin SY, Kim DH (2008) Effects of consolidation temperature and pressure on microstructures and mechanical properties of Cu-based bulk amorphous alloys consolidated by spark plasma sintering. J Alloys Compd 453(1–2):108–114. https://doi.org/10.1016/j.jallcom.2006.11.054

    Article  CAS  Google Scholar 

  73. Kim TS, Lee JK, Kim HJ, Bae JC (2005) Consolidation of CU54Ni6Zr22Ti18 bulk amorphous alloy powders. Mater Sci Eng A 402(1–2):228–233. https://doi.org/10.1016/j.msea.2005.04.044

    Article  CAS  Google Scholar 

  74. Trapp J, Kieback B (2015) Temperature distribution in metallic powder particles during initial stage of field-activated sintering. J Am Ceram Soc 98(11):3547–3552. https://doi.org/10.1111/jace.13757

    Article  CAS  Google Scholar 

  75. Diouf S, Menapace C, D’Incau M, Molinari A, Ischia G (2013) Spark plasma sintering of cryomilled copper powder. Powder Metall 56(5):420–426. https://doi.org/10.1179/1743290113y.0000000065

    Article  CAS  Google Scholar 

  76. Diouf S, Menapace C, Molinari A (2012) Study of effect of particle size on densification of copper during spark plasma sintering. Powder Metall 55(3):228–234. https://doi.org/10.1179/1743290111y.0000000019

    Article  CAS  Google Scholar 

  77. Diouf S, Molinari A (2012) Densification mechanisms in spark plasma sintering: effect of particle size and pressure. Powder Technol 221:220–227. https://doi.org/10.1016/j.powtec.2012.01.005

    Article  CAS  Google Scholar 

  78. Menapace C, Cipolloni G, Hebda M, Ischia G (2016) Spark plasma sintering behaviour of copper powders having different particle sizes and oxygen contents. Powder Technol 291:170–177. https://doi.org/10.1016/j.powtec.2015.12.020

    Article  CAS  Google Scholar 

  79. Li YJ, Zeng XH, Blum W (2004) Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu. Acta Mater 52(17):5009–5018. https://doi.org/10.1016/j.actamat.2004.07.003

    Article  CAS  Google Scholar 

  80. Blum W, Li YJ, Chen J, Zeng XH, Lu K (2006) On the Hall-Petch relation between flow stress and grain size. Int J Mater Res 97(12):1661–1666. https://doi.org/10.3139/146.101398

    Article  CAS  Google Scholar 

  81. Park NJ, Lee SJ, Lee IS, Cho KS, Kim SJ (2004) Manufacturing of Cu-15.0Zn-8.1Al shape memory alloy using spark plasma sintering. Mater Sci Forum 449–4:1109–1112

    Article  Google Scholar 

  82. Cipolloni G, Pellizzari M, Molinari A, Hebda M, Zadra M (2015) Contamination during the high-energy milling of atomized copper powder and its effects on spark plasma sintering. Powder Technol 275:51–59. https://doi.org/10.1016/j.powtec.2015.01.063

    Article  CAS  Google Scholar 

  83. Wen HM, Zhao YH, Zhang ZH, Ertorer O, Dong SM, Lavernia EJ (2011) The influence of oxygen and nitrogen contamination on the densification behavior of cryomilled copper powders during spark plasma sintering. J Mater Sci 46(9):3006–3012. https://doi.org/10.1007/s10853-010-5178-9

    Article  CAS  Google Scholar 

  84. Kong Q, Lian L, Liu Y, Zhang J (2014) Fabrication and characterization of nanocrystalline Al–Cu alloy by spark plasma sintering. Mater Manuf Process 29(10):1232–1236. https://doi.org/10.1080/10426914.2014.941483

    Article  CAS  Google Scholar 

  85. Aman Y, Garnier V, Djurado E (2012) Pressure-less spark plasma sintering effect on non-conventional necking process during the initial stage of sintering of copper and alumina. J Mater Sci 47(15):5766–5773. https://doi.org/10.1007/s10853-012-6469-0

    Article  CAS  Google Scholar 

  86. Arnaud C, Maniere C, Chevallier G, Estournes C, Mainguy R, Lecouturier F, Mesguich D, Weibel A, Durand L, Laurent C (2015) Dog-bone copper specimens prepared by one-step spark plasma sintering. J Mater Sci 50(22):7364–7373. https://doi.org/10.1007/s10853-015-9293-5

    Article  CAS  Google Scholar 

  87. Li LX (2012) Properties of Ni–Cu bulk alloy prepared by spark plasma sintering technique. Adv Mater Res 476–478:949–953

    Article  Google Scholar 

  88. Rogachev AS, Kuskov KV, Shkodich NF, Moskovskikh DO, Orlov AO, Usenko AA, Karpov AV, Kovalev ID, Mukasyan AS (2016) Influence of high-energy ball milling on electrical resistance of Cu and Cu/Cr nanocomposite materials produced by Spark Plasma Sintering. J Alloys Compd 688:468–474. https://doi.org/10.1016/j.jallcom.2016.07.061

    Article  CAS  Google Scholar 

  89. Saiprasad M, Atchayakumar R, Thiruppathi K, Raghuraman S (2016) Consolidation of copper and aluminium powders by spark plasma sintering. Iop Conf Ser-Mat Sci 149(1):012057. https://doi.org/10.1088/1757-899X/149/1/012057

    Article  Google Scholar 

  90. Zhang ZH, Wang FC, Lee SK, Liu Y, Cheng JW, Liang Y (2009) Microstructure characteristic, mechanical properties and sintering mechanism of nanocrystalline copper obtained by SPS process. Mater Sci Eng A 523(1–2):134–138. https://doi.org/10.1016/j.msea.2009.07.016

    Article  CAS  Google Scholar 

  91. Zhang ZH, Wang FC, Wang L, Li SK, Shen MW, Osamu S (2008) Microstructural characteristics of large-scale ultrafine-grained copper. Mater Charact 59(3):329–333. https://doi.org/10.1016/j.matchar.2007.06.014

    Article  CAS  Google Scholar 

  92. Zhaohui Z, Fuchi W, Lin W, Shukui L, Osamu S (2008) Sintering mechanism of large-scale ultrafine-grained copper prepared by SPS method. Mater Lett 62(24):3987–3990. https://doi.org/10.1016/j.matlet.2008.05.036

    Article  CAS  Google Scholar 

  93. Lv X, Liu Z, Lei T, Li Q, Ren Y, Zhou X, Zhang Z (2020) Effect of heat treatment on Cr2Nb phase and properties of spark plasma sintered Cu–2Cr–1Nb alloy. Materials 13(12):1–12. https://doi.org/10.3390/ma13122860

    Article  CAS  Google Scholar 

  94. Adam O, Jan V (2020) Influence of milling time on the microstructure of immiscible Cu–Fe–Co–W alloy prepared by powder metallurgy. In: Paper presented at the METAL 2020—29th international conference on metallurgy and materials, conference proceedings, https://doi.org/10.37904/metal.2020.3613

  95. Hu ZY, Zhang ZH, Cheng XW, Wang FC, Zhang YF, Li SL (2020) A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications. Mater Des 191:108662. https://doi.org/10.1016/j.matdes.2020.108662

    Article  CAS  Google Scholar 

  96. Zhang Z-H, Liu Z-F, Lu J-F, Shen X-B, Wang F-C, Wang Y-D (2014) The sintering mechanism in spark plasma sintering—proof of the occurrence of spark discharge. Scripta Mater 81:56–59. https://doi.org/10.1016/j.scriptamat.2014.03.011

    Article  CAS  Google Scholar 

  97. Frei JM, Anselmi-Tamburini U, Munir ZA (2007) Current effects on neck growth in the sintering of copper spheres to copper plates by the pulsed electric current method. J Appl Phys 101(11):114914. https://doi.org/10.1063/1.2743885

    Article  CAS  Google Scholar 

  98. Yanagisawa O, Kuramoto H, Matsugi K, Komatsu M (2003) Observation of particle behavior in copper powder compact during pulsed electric discharge. Mater Sci Eng A 350(1–2):184–189. https://doi.org/10.1016/S0921-5093(02)00726-8

    Article  Google Scholar 

  99. Wang SW, Chen LD, Kang YS, Niino M, Hirai T (2000) Effect of plasma activated sintering (PAS) parameters on densification of copper powder. Mater Res Bull 35(4):619–628. https://doi.org/10.1016/S0025-5408(00)00246-4

    Article  CAS  Google Scholar 

  100. Guyot P, Rat V, Coudert JF, Jay F, Maître A, Pradeilles N (2012) Does the Branly effect occur in spark plasma sintering? J Phys D Appl Phys 45(9):092001. https://doi.org/10.1088/0022-3727/45/9/092001

    Article  CAS  Google Scholar 

  101. Song XY, Liu XM, Zhang JX (2005) Mechanism of conductive powder microstructure evolution in the process of SPS. Sci China Ser E 48(3):258–269. https://doi.org/10.1360/04ye0265

    Article  CAS  Google Scholar 

  102. Song XY, Liu XM, Zhang JX (2006) Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering. J Am Ceram Soc 89(2):494–500. https://doi.org/10.1111/j.1551-2916.2005.00777.x

    Article  CAS  Google Scholar 

  103. Diouf S, Fedrizzi A, Molinari A (2013) A fractographic and microstructural analysis of the neck regions of coarse copper particles consolidated by spark plasma sintering. Mater Lett 111:17–19. https://doi.org/10.1016/j.matlet.2013.08.056

    Article  CAS  Google Scholar 

  104. Trapp J, Semenov A, Eberhardt O, Nöthe M, Wallmersperger T, Kieback B (2020) Fundamental principles of spark plasma sintering of metals: part II—about the existence or non-existence of the ‘spark plasma effect.’ Powder Metall 63(5):312–328. https://doi.org/10.1080/00325899.2020.1829349

    Article  CAS  Google Scholar 

  105. Collard C, Trzaska Z, Durand L, Chaix JM, Monchoux JP (2017) Theoretical and experimental investigations of local overheating at particle contacts in spark plasma sintering. Powder Technol 321:458–470. https://doi.org/10.1016/j.powtec.2017.08.033

    Article  CAS  Google Scholar 

  106. Bulat LP, Nefedova IA, Pshenay-Severin DA (2014) Targeted use of SPS method for improvement of thermoelectrics. Adv Sci Technol 93:168–173

    Article  Google Scholar 

  107. Rogachev AS, Vadchenko SG, Kudryashov VA, Shchukin AS, Alymov MI (2019) Direct observation of processes at particle-to-particle contacts during electric pulse consolidation of a titanium powder. Dokl Phys Chem 488(2):151–153. https://doi.org/10.1134/S001250161910004x

    Article  CAS  Google Scholar 

  108. Collet R, Le Gallet S, Naimi F, Charlot F, Bonnefont G, Fantozzi G, Chaix J-M, Bernard F (2017) Effect of current on the sintering of pre-oxidized copper powders by SPS. J Alloys Compd 692(Supplement C):478–484. https://doi.org/10.1016/j.jallcom.2016.08.191

    Article  CAS  Google Scholar 

  109. Hulbert DM, Anders A, Andersson J, Lavernia EJ, Mukherjee AK (2009) A discussion on the absence of plasma in spark plasma sintering. Scripta Mater 60(10):835–838. https://doi.org/10.1016/j.scriptamat.2008.12.059

    Article  CAS  Google Scholar 

  110. Hulbert DM, Anders A, Dudina DV, Andersson J, Jiang D, Unuvar C, Anselmi-Tamburini U, Lavernia EJ, Mukherjee AK (2008) The absence of plasma in “spark plasma sintering.” J Appl Phys 104(3):033305. https://doi.org/10.1063/1.2963701

    Article  CAS  Google Scholar 

  111. Saunders T, Grasso S, Reece MJ (2015) Plasma formation during electric discharge (50 V) through conductive powder compacts. J Eur Ceram Soc 35(3):871–877. https://doi.org/10.1016/j.jeurceramsoc.2014.09.022

    Article  CAS  Google Scholar 

  112. Yanagisawa O, Matsugi K, Hatayama T (1997) Effect of direct current pulse discharge on electrical resistivity of copper and iron powder compacts. Mater Trans JIM 38(3):240–246. https://doi.org/10.2320/matertrans1989.38.240

    Article  CAS  Google Scholar 

  113. Xie GQ, Ohashi O, Chiba K, Yamaguchi N, Song MH, Furuya K, Noda T (2003) Frequency effect on pulse electric current sintering process of pure aluminum powder. Mater Sci Eng A 359(1–2):384–390. https://doi.org/10.1016/S0921-5093(03)00393-9

    Article  CAS  Google Scholar 

  114. Yang C, Mo DG, Lu HZ, Li XQ, Zhang WW, Fu ZQ, Zhang LC, Lavernia EJ (2017) Reaction diffusion rate coefficient derivation by isothermal heat treatment in spark plasma sintering system. Scripta Mater 134(Supplement C):91–94. https://doi.org/10.1016/j.scriptamat.2017.03.005

    Article  CAS  Google Scholar 

  115. Garay JE, Anselmi-Tamburini U, Munir ZA (2003) Enhanced growth of intermetallic phases in the Ni–Ti system by current effects. Acta Mater 51(15):4487–4495. https://doi.org/10.1016/s1359-6454(03)00284-2

    Article  CAS  Google Scholar 

  116. Li R, Niu P, Deng S, Yuan T, Liu G (2019) Diffusivity of Ti–Ni diffusion couple enhanced by pulse current during spark plasma sintering. Metall Mater Trans B 51(1):6–10. https://doi.org/10.1007/s11663-019-01725-7

    Article  CAS  Google Scholar 

  117. Li R, Yuan T, Liu X, Zhou K (2016) Enhanced atomic diffusion of Fe–Al diffusion couple during spark plasma sintering. Scripta Mater 110:105–108. https://doi.org/10.1016/j.scriptamat.2015.08.012

    Article  CAS  Google Scholar 

  118. Trzaska Z, Monchoux J-P (2015) Electromigration experiments by spark plasma sintering in the silver–zinc system. J Alloys Compd 635:142–149. https://doi.org/10.1016/j.jallcom.2015.02.122

    Article  CAS  Google Scholar 

  119. Rudinsky S, Brochu M (2015) Interdiffusion between copper and nickel powders and sintering map development during spark plasma sintering. Scripta Mater 100:74–77. https://doi.org/10.1016/j.scriptamat.2014.12.017

    Article  CAS  Google Scholar 

  120. Rudinsky S, Gauvin R, Brochu M (2014) The effects of applied current on one-dimensional interdiffusion between copper and nickel in spark plasma sintering. J Appl Phys 116(15):154901. https://doi.org/10.1063/1.4898158

    Article  CAS  Google Scholar 

  121. Kuskov KV, Rogachev AS, Vadchenko SG, Shkodich NF, Rouvimov S, Shchukin AS, Illarionova EV, Kudryashov VA, Mukasyan AS (2018) Resistance of microcrystalline and nanocrystalline Cu/Cr pseudo-alloys to vacuum discharge. J Alloys Compd 750:811–818. https://doi.org/10.1016/j.jallcom.2018.04.049

    Article  CAS  Google Scholar 

  122. Pan S, Zhao C, Zhu W, Jiang F, Zhou J, Ren F (2019) Sliding wear behavior of spark plasma-sintered Cu–6 Wt Pct Cr alloy at room and elevated temperatures. Metall Mater Trans A 50(7):3132–3147. https://doi.org/10.1007/s11661-019-05243-8

    Article  CAS  Google Scholar 

  123. Kuskov KV, Volkov IN, Skodich NF, Nepapushev AA, Arkhipov DI, Moskovskikh DO (2019) Study of structure of copper-based composite materials during the spark plasma sintering. In: Paper presented at the IOP conference series: materials science and engineering, https://doi.org/10.1088/1757-899X/558/1/012024

  124. Huang LQ, Qian M, Lu HB, Sun Y, Wang LH, Zou J (2017) Reducing electric current and energy consumption of spark plasma sintering via punch configuration design. Ceram Int 43(18):17225–17228. https://doi.org/10.1016/j.ceramint.2017.09.048

    Article  CAS  Google Scholar 

  125. German RM (2014) Sintering: from empirical observations to scientific principles. Butterworth-Heinemann, Boston. https://doi.org/10.1016/B978-0-12-401682-8.00006-9

    Book  Google Scholar 

  126. Collet R, le Gallet S, Charlot F, Lay S, Chaix JM, Bernard F (2016) Oxide reduction effects in SPS processing of Cu atomized powder containing oxide inclusions. Mater Chem Phys 173:498–507. https://doi.org/10.1016/j.matchemphys.2016.02.044

    Article  CAS  Google Scholar 

  127. Zhang ZH, Wang FC, Wang L, Li SK (2008) Ultrafine-grained copper prepared by spark plasma sintering process. Mater Sci Eng A 476(1–2):201–205. https://doi.org/10.1016/j.msea.2007.04.107

    Article  CAS  Google Scholar 

  128. Shkodich NF, Rogachev AS, Vadchenko SG, Moskovskikh DO, Sachkova NV, Rouvimov S, Mukasyan AS (2014) Bulk Cu–Cr nanocomposites by high-energy ball milling and spark plasma sintering. J Alloys Compd 617:39–46. https://doi.org/10.1016/j.jallcom.2014.07.133

    Article  CAS  Google Scholar 

  129. Shkodich NF, Kuskov KV, Kovalev ID, Scheck YB (2019) Nanostructured Cu–Cr–W pseudoalloys by combined use of high-energy ball milling and spark plasma sintering. In: Paper presented at the IOP conference series: materials science and engineering, https://doi.org/10.1088/1757-899X/558/1/012047

  130. Diatta J, Antou G, Pradeilles N, Maître A (2017) Numerical modeling of spark plasma sintering—discussion on densification mechanism identification and generated porosity gradients. J Eur Ceram Soc 37(15):4849–4860. https://doi.org/10.1016/j.jeurceramsoc.2017.06.052

    Article  CAS  Google Scholar 

  131. Song AJ, Ma MZ, Zhou RZ, Wang L, Zhang WG, Tan CL, Liu RP (2012) Grain growth and sintering characteristics of Ni–Cu alloy nanopowders consolidated by the spark plasma sintering method. Mater Sci Eng A 538:219–223. https://doi.org/10.1016/j.msea.2012.01.033

    Article  CAS  Google Scholar 

  132. Maniere C, Lee G, Olevsky EA (2017) All-materials-inclusive flash spark plasma sintering. Sci Rep 7(1):15071. https://doi.org/10.1038/s41598-017-15365-x

    Article  CAS  Google Scholar 

  133. Zhu KN, Godfrey A, Hansen N, Zhang XD (2017) Microstructure and mechanical strength of near- and sub-micrometre grain size copper prepared by spark plasma sintering. Mater Des 117(Supplement C):95–103. https://doi.org/10.1016/j.matdes.2016.12.042

    Article  CAS  Google Scholar 

  134. Semenov AS, Trapp J, Nothe M, Eberhardt O, Kieback B, Wallmersperger T (2021) Thermo-electro-mechanical modeling of spark plasma sintering processes accounting for grain boundary diffusion and surface diffusion. Comput Mech 67(5):1395–1407. https://doi.org/10.1007/s00466-021-01994-7

    Article  Google Scholar 

  135. Trapp J, Kieback B (2019) Fundamental principles of spark plasma sintering of metals: part I—Joule heating controlled by the evolution of powder resistivity and local current densities. Powder Metall 62(5):297–306. https://doi.org/10.1080/00325899.2019.1653532

    Article  CAS  Google Scholar 

  136. Trapp J, Semenov A, Nöthe M, Wallmersperger T, Kieback B (2020) Fundamental principles of spark plasma sintering of metals: part III—densification by plasticity and creep deformation. Powder Metall 63(5):329–337. https://doi.org/10.1080/00325899.2020.1834748

    Article  CAS  Google Scholar 

  137. Wen H, Lavernia EJ (2012) Twins in cryomilled and spark plasma sintered Cu–Zn–Al. Scripta Mater 67(3):245–248. https://doi.org/10.1016/j.scriptamat.2012.04.024

    Article  CAS  Google Scholar 

  138. Arnaud C, Lecouturier F, Mesguich D, Ferreira N, Chevallier G, Estournès C, Weibel A, Peigney A, Laurent C (2016) High strength–high conductivity nanostructured copper wires prepared by spark plasma sintering and room-temperature severe plastic deformation. Mater Sci Eng A 649:209–213. https://doi.org/10.1016/j.msea.2015.09.122

    Article  CAS  Google Scholar 

  139. Kumar A, Pradhan SK, Jayasankar K, Debata M, Sharma RK, Mandal A (2017) Structural investigations of nanocrystalline Cu–Cr–Mo alloy prepared by high-energy ball milling. J Electron Mater 46(2):1339–1347. https://doi.org/10.1007/s11664-016-5125-x

    Article  CAS  Google Scholar 

  140. Kuskov KV, Sedegov AS, Novitskii AP, Nepapushev AA, Moskovskikh DO, Shkodich NF, Rogachev AS, Mukasyan AS (2017) Influence of chromium in nanocrystalline copper–chromium pseudoalloy on its structure and properties. Nanotechnol Russ 12(1–2):40–48. https://doi.org/10.1134/s1995078017010074

    Article  CAS  Google Scholar 

  141. Shkodich NF, Vergunova YS, Kuskov KV, Trusov GV, Kovalev ID (2020) Nanostructured gradient material based on the Cu–Cr–W pseudoalloy fabricated by high-energy ball milling and spark plasma sintering. Russ J Non-Ferrous Metals 61(3):309–318. https://doi.org/10.3103/s1067821220030153

    Article  Google Scholar 

  142. Madhur V, Srikanth M, Annamalai AR, Muthuchamy A, Agrawal DK, Jen CP (2021) Effect of nano copper on the densification of spark plasma sintered W–Cu composites. Nanomaterials 11(2):1–11. https://doi.org/10.3390/nano11020413

    Article  CAS  Google Scholar 

  143. Abedi M, Moskovskikh DO, Mukasyan AS (2019) Reactive flash spark plasma sintering of alumina reinforced by silicon carbide nanocomposites: physicochemical study. In: Paper presented at the XV international symposium on self-propagating high-temperature synthesis, Moscow, Russia, https://doi.org/10.24411/9999-0014A-2019-10004

  144. Kuskov KV, Abedi M, Moskovskikh DO, Serhiienko I, Mukasyan AS (2021) Comparison of conventional and flash spark plasma sintering of Cu–Cr pseudo-alloys: kinetics, structure, properties. In: Iqbal Khan M (ed) Prime archives in material science, 3rd edn. Videleaf, Telangana, pp 1–33. https://doi.org/10.3390/met11010141

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MA and AA were involved in conceptualization and methodology; MA, AA, and SV were involved in validation and investigation; MA, AA, and AS were involved in data curation; MA, AA, SV, and AS were involved in writing—original draft preparation; MA and AS were involved in writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Mohammad Abedi or Alexander S. Mukasyan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, M., Asadi, A., Vorotilo, S. et al. A critical review on spark plasma sintering of copper and its alloys. J Mater Sci 56, 19739–19766 (2021). https://doi.org/10.1007/s10853-021-06556-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06556-z

Navigation