Skip to main content
Log in

Anisotropic mechanical properties of extrusion-based 3D printed layered concrete

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Extrusion-based 3D printed concrete is a promising material and processing technique for use in the construction industry. In this study, 3D printed specimens were loaded dynamically and statically to investigate their anisotropic characteristics. The experimental results showed that the average static compressive strength of the 3D printed concrete specimens was 115% of that of the cast specimens. Meanwhile, the dynamic compressive strength of DX specimens was significantly larger than that of other 3D printed specimens and cast specimens under the same impact pressure. In particular, ultrasonic pulse velocity values were used to quantitatively represent the anisotropy of 3D printed specimens. In conclusion, the anisotropic characteristics of 3D printed concrete were studied. The results indicate that the performance of 3D printed concrete was best (especially in the X-direction). The results provide a reference for engineers looking to design 3D printed components for use in construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure. 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Bos F, Wolfs R, Ahmed Z, Salet T (2016) Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual Phys Prototyp 11(3):209–225

    Article  Google Scholar 

  2. Buswell RA, de Silva WRL, Jones SZ, Dirrenberger J (2018) 3D printing using concrete extrusion: a roadmap for research. Cem Concr Res 112:37–49

    Article  CAS  Google Scholar 

  3. Chaves Figueiredo S, Romero Rodríguez C, Ahmed ZY, Bos DH, Xu Y, Salet TM et al (2019) An approach to develop printable strain hardening cementitious composites. Mater Design. 169:107651. https://doi.org/10.1016/j.matdes.2019.107651

    Article  CAS  Google Scholar 

  4. Clarke AJ (2019) Fine-grained metals from 3D printing. Nature 576(7785):41–42

    Article  CAS  Google Scholar 

  5. Visser CW, Pohl R, Sun C, Roemer GW, in ’t Veld BH, Lohse D, (2015) Toward 3D printing of pure metals by laser-induced forward transfer. Adv Mater. 27(27):4087–4092

    Article  CAS  Google Scholar 

  6. Lin YP, Zhang Y, Yu MF (2019) Parallel process 3D metal microprinting. Adv Mater Technol 4(1):1800393. https://doi.org/10.1002/admt.201800393

    Article  CAS  Google Scholar 

  7. Li S, Duan WY, Zhao T, Han WJ, Wang L, Dou R et al (2018) The fabrication of SiBCN ceramic components from preceramic polymers by digital light processing (DLP) 3D printing technology. J Eur Ceram Soc 38(14):4597–4603

    Article  CAS  Google Scholar 

  8. Hwa LC, Rajoo S, Noor AM, Ahmad N, Uday MB (2017) Recent advances in 3D printing of porous ceramics: a review. Curr Opin Solid State Mat Sci 21(6):323–347

    Article  CAS  Google Scholar 

  9. de Leon A, Chen QY, Palaganas NB, Palaganas JO, Manapat J, Advincula RC (2016) High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym 103:141–155

    Article  Google Scholar 

  10. Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW et al (2017) A bioprosthetic ovary created using 3D printing microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 8:15261. https://doi.org/10.1038/ncomms15261

    Article  CAS  Google Scholar 

  11. Ligon SC, Liska R, Stampfl J, Gurr M, Mulhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117(15):10212–10290

    Article  CAS  Google Scholar 

  12. Pham L, Tran P, Sanjayan J (2020) Steel fibres reinforced 3D printing concrete: Influence of fibre sizes on mechanical performance. Constr Build Mater. 250:118785. https://doi.org/10.1016/j.conbuildmat.2020.118785

    Article  Google Scholar 

  13. Arunothayan AR, Nematollahi B, Ranade R, Bong SH, Sanjayan J (2020) Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Constr Build Mater. 257:119546. https://doi.org/10.1016/j.conbuildmat.2020.119546

    Article  Google Scholar 

  14. Casagrande L, Esposito L, Menna C, Asprone D, Auricchio F (2020) Effect of testing procedures on buildability properties of 3D-printable concrete. Constr Build Mater. 245:118286. https://doi.org/10.1016/j.conbuildmat.2020.118286

    Article  Google Scholar 

  15. Chen M, Li L, Zheng Y, Zhao P, Lu L, Cheng X (2018) Rheological and mechanical properties of admixtures modified 3D printing sulphoaluminate cementitious materials. Constr Build Mater 189:601–611

    Article  CAS  Google Scholar 

  16. De Schutter G, Lesage K, Mechtcherine V, Nerella VN, Habert G, Agusti-Juan I (2018) Vision of 3D printing with concrete-technical, economic and environmental potentials. Cem Concr Res 112:25–36

    Article  Google Scholar 

  17. Wangler T, Roussel N, Bos FP, Salet TAM, Flatt RJ (2019) Digital concrete: a review. Cem Concr Res 123:105780. https://doi.org/10.1016/j.cemconres.2019.105780

    Article  CAS  Google Scholar 

  18. Labonnote N, Ronnquist A, Manum B, Ruther P (2016) Additive construction: state-of-the-art, challenges and opportunities. Autom Constr 72:347–366

    Article  Google Scholar 

  19. Le TT, Austin SA, Lim S, Buswell RA, Law R, Gibb AGF et al (2012) Hardened properties of high-performance printing concrete. Cem Concr Res 42(3):558–566

    Article  CAS  Google Scholar 

  20. Lu B, Weng YW, Li MY, Qian Y, Leong KF, Tan MJ et al (2019) A systematical review of 3D printable cementitious materials. Constr Build Mater 207:477–490

    Article  Google Scholar 

  21. Wolfs RJM, Bos FP, Salet TAM (2019) Hardened properties of 3D printing concrete: the influence of process parameters on interlayer adhesion. Cem Concr Res 119:132–140

    Article  CAS  Google Scholar 

  22. Zhang C, Hou ZY, Chen C, Zhang YM, Mechtcherine V, Sun ZM (2019) Design of 3D printable concrete based on the relationship between flowability of cement paste and optimum aggregate content. Cem Concr Compos 104:103406. https://doi.org/10.1016/j.cemconcomp.2019.103406

    Article  CAS  Google Scholar 

  23. Panda B, Noor Mohamed NA, Paul SC, Bhagath Singh G, Tan MJ, Savija B (2019) The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printing concrete. Materials 12(13):2149. https://doi.org/10.3390/ma12132149

    Article  CAS  Google Scholar 

  24. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Pt B-Eng 143:172–196

    Article  CAS  Google Scholar 

  25. Ma G, Li Z, Wang L, Wang F, Sanjayan J (2019) Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Constr Build Mater 202:770–783

    Article  Google Scholar 

  26. Zhang Y, Zhang Y, She W, Yang L, Liu G, Yang Y (2019) Rheological and harden properties of the high-thixotropy 3D printing concrete. Constr Build Mater 201:278–285

    Article  Google Scholar 

  27. Paul SC, Tay YWD, Panda B, Tan MJ (2018) Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch Civ Mech Eng 18(1):311–319

    Article  Google Scholar 

  28. Ding T, Xiao J, Zou S, Wang Y (2020) Hardened properties of layered 3D printing concrete with recycled sand. Cem Concr Compos. 113:103724. https://doi.org/10.1016/j.cemconcomp.2020.103724

    Article  CAS  Google Scholar 

  29. Ji GC, Ding T, Xiao JZ, Du SP, Li J, Duan ZH (2019) A 3D printing ready-mixed concrete power distribution substation: materials and construction technology. Materials 12(9):1540. https://doi.org/10.3390/ma12091540

    Article  CAS  Google Scholar 

  30. Yeon J, Kang JL, Yan W (2018) Spall damage repair using 3D printing technology. Autom Constr 89:266–274

    Article  Google Scholar 

  31. Asprone D, Auricchio F, Menna C, Mercuri V (2018) 3D printing of reinforced concrete elements: technology and design approach. Constr Build Mater 165:218–231

    Article  Google Scholar 

  32. Zhang Y, Zhang YS, She W, Yang L, Lin GJ, Yang YG (2019) Rheological and harden properties of the high-thixotropy 3D printing concrete. Constr Build Mater 201:278–285

    Article  Google Scholar 

  33. Pham GN, Lee S-H, Kwon O-H, Kwon K-R (2018) Anti-3D weapon model detection for safe 3D printing based on convolutional neural networks and D2 shape distribution. Symmetry-Basel 10(4):90. https://doi.org/10.3390/sym10040090

    Article  Google Scholar 

  34. Walther G (2015) Printing insecurity? the security implications of 3D-printing of weapons. Sci Eng Ethics 21(6):1435–1445

    Article  Google Scholar 

  35. Tan G, Nasir MZM, Ambrosi A, Pumera M (2017) 3D Printing electrodes for detection of nitroaromatic explosives and nerve agents. Anal Chem 89(17):8995–9001

    Article  CAS  Google Scholar 

  36. Diggs-McGee BN, Kreiger EL, Kreiger MA, Case MP (2019) Print time vs. elapsed time: A temporal analysis of a continuous printing operation for additive constructed concrete. Addit Manuf. 28:205–214

    Google Scholar 

  37. Zareiyan B, Khoshnevis B (2017) Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Autom Constr 83:212–221

    Article  Google Scholar 

  38. Fan LF, Wang LJ, Wu ZJ (2018) Wave transmission across linearly jointed complex rock masses. Int J Rock Mech Min Sci 112:193–200

    Article  Google Scholar 

  39. Zhu JY, Kee SH, Han D, Tsai YT (2011) Effects of air voids on ultrasonic wave propagation in early age cement pastes. Cem Concr Res 41(8):872–881

    Article  CAS  Google Scholar 

  40. Jia P, Li L, Liu DQ, Wang XS, Wang DC (2020) Insight into rock crack propagation from resistivity and ultrasonic wave variation. Theor Appl Fract Mech. 109:102758. https://doi.org/10.1016/j.tafmec.2020.102758

    Article  Google Scholar 

  41. Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Sect B 62(11):676-700. https://doi.org/10.1088/0370-1301/62/11/302

    Article  Google Scholar 

  42. Zhu J, Hu SS, Wang LL (2009) An analysis of stress uniformity for concrete-like specimens during SHPB tests. Int J Impact Eng 36(1):61–72

    Article  Google Scholar 

  43. Gong FQ, Si XF, Li XB, Wang SY (2019) Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar. Int J Rock Mech Min Sci 113:211–219

    Article  Google Scholar 

  44. Hou JF, Guo ZP, Liu WZ, Zhang YX (2020) Mechanical properties and meso-structure response of cemented gangue-fly ash backfill with cracks under seepage- stress coupling. Constr Build Mater. 250:118863. https://doi.org/10.1016/j.conbuildmat.2020.118863

    Article  Google Scholar 

  45. Chen SJ, Du ZW, Zhang Z, Zhang HW, Xia ZG, Feng F (2020) Effects of chloride on the early mechanical properties and microstructure of gangue-cemented paste backfill. Constr Build Mater. 235:117504. https://doi.org/10.1016/j.conbuildmat.2019.117504

    Article  CAS  Google Scholar 

  46. Jiang ZL, Easa SM, Hu CB, Zheng XY (2020) Evaluation of new aspect of styrene-butadiene-styrene modified bitumens: damping property and mechanism. Constr Build Mater 242:118185. https://doi.org/10.1016/j.conbuildmat.2020.118185

    Article  CAS  Google Scholar 

  47. Asprone D, Menna C, Bos FP, Salet TAM, Mata-Falcon J, Kaufmann W (2018) Rethinking reinforcement for digital fabrication with concrete. Cem Concr Res 112:111–121

    Article  CAS  Google Scholar 

  48. Panda B, Paul SC, Tan MJ (2017) Anisotropic mechanical performance of 3D printing fiber reinforced sustainable construction material. Mater Lett 209:146–149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant nos 51808553, 51808552). The authors also acknowledge the support of Nanjing Institute for Intelligent Additive Manufacturing Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenkang Liu or Songlin Yue.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Yue, S., Zhou, C. et al. Anisotropic mechanical properties of extrusion-based 3D printed layered concrete. J Mater Sci 56, 16851–16864 (2021). https://doi.org/10.1007/s10853-021-06416-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06416-w

Navigation