Skip to main content
Log in

Investigation of directional effects on the electrical conductivity and piezoresistivity of carbon nanotube/polypropylene composites obtained by extrusion

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrical conductivity and piezoresistivity of multiwall carbon nanotube (MWCNT)/polypropylene (PP) composites obtained by extrusion are investigated, with particular attention to the possible directional effects generated during the extrusion process. This is accomplished by investigating the electrical and electromechanical responses of the nanocomposites at three MWCNT weight concentrations (3, 4 and 5 wt%) in three directions, viz. the extrusion direction, transverse to extrusion (in-plane) and through thickness. Higher electrical conductivity in the extrusion direction was more evident for the lowest MWCNT content. However, the piezoresistive sensitivity was similar in all directions. Films with 4 wt% showed the highest piezoresistive sensitivity, reaching gage factors of ~ 4.5 for strains between 0 and 0.8%, and ~ 10.2 for strains between 1 and 3%. After an initial drop in the electrical resistance, concomitant with stress relaxation, the changes in electrical resistance showed large reproducibility. Digital image correlation conducted during cyclic piezoresistive testing at 0.8% strain indicates small accumulation of local plasticity as the number of cycles increases, especially in zones near the electrodes. These irreversible changes in the material are expected to trigger the permanent changes in the electrical resistance measured.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Tjong SC, Liang GD, Bao SP (2007) Electrical behavior of polypropylene/multiwalled carbon nanotube nanocomposites with low percolation threshold. Scr Mater 57:461–464. https://doi.org/10.1016/j.scriptamat.2007.05.035

    Article  CAS  Google Scholar 

  2. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498. https://doi.org/10.1016/j.compscitech.2008.06.018

    Article  CAS  Google Scholar 

  3. Li Y, Huang X, Zeng L et al (2019) A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. J Mater Sci 54:1036–1076. https://doi.org/10.1007/s10853-018-3006-9

    Article  CAS  Google Scholar 

  4. Li C, Thostenson ET, Chou T (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68:1227–1249. https://doi.org/10.1016/j.compscitech.2008.01.006

    Article  CAS  Google Scholar 

  5. Zetina-Hernández O, Duarte-Aranda S, May-Pat A et al (2013) Coupled electro-mechanical properties of multiwall carbon nanotube/polypropylene composites for strain sensing applications. J Mater Sci 48:7587–7593. https://doi.org/10.1007/s10853-013-7575-3

    Article  CAS  Google Scholar 

  6. Fu X, Ramos M, Al-Jumaily AM et al (2019) Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance. J Mater Sci 54:2170–2180. https://doi.org/10.1007/s10853-018-2954-4

    Article  CAS  Google Scholar 

  7. Chung DDL (2020) A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing. J Mater Sci 55:15367–15396. https://doi.org/10.1007/s10853-020-05099-z

    Article  CAS  Google Scholar 

  8. Aviles F, May-Pat A, Canche-Escamilla G et al (2016) Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites. J Intell Mater Syst Struct 27:92–103. https://doi.org/10.1177/1045389X14560367

    Article  CAS  Google Scholar 

  9. Avilés F, Oliva-Avilés AI, Cen-Puc M (2018) Piezoresistivity, strain, and damage self-sensing of polymer composites filled with carbon nanostructures. Adv Eng Mater 20:1701159. https://doi.org/10.1002/adem.201701159

    Article  CAS  Google Scholar 

  10. Chung DDL (2001) Structural health monitoring by electrical resistance measurement. Smart Mater Struct 10:624–636. https://doi.org/10.1088/0964-1726/10/4/305

    Article  CAS  Google Scholar 

  11. Kang I, Schulz MJ, Kim JH et al (2006) A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct 15:737–748. https://doi.org/10.1088/0964-1726/15/3/009

    Article  CAS  Google Scholar 

  12. Yang T, Xie D, Li Z, Zhu H (2017) Recent advances in wearable tactile sensors: materials, sensing mechanisms, and device performance. Mater Sci Eng R Rep 115:1–37. https://doi.org/10.1016/j.mser.2017.02.001

    Article  Google Scholar 

  13. Ke K, Solouki Bonab V, Yuan D, Manas-Zloczower I (2018) Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures. Carbon 139:52–58. https://doi.org/10.1016/j.carbon.2018.06.037

    Article  CAS  Google Scholar 

  14. Dai H, Thostenson ET (2019) Large-area carbon nanotube-based flexible composites for ultra-wide range pressure sensing and spatial pressure mapping. ACS Appl Mater Interfaces 11:48370–48380. https://doi.org/10.1021/acsami.9b17100

    Article  CAS  Google Scholar 

  15. Nanni F, Mayoral BL, Madau F et al (2012) Effect of MWCNT alignment on mechanical and self-monitoring properties of extruded PET-MWCNT nanocomposites. Compos Sci Technol 72:1140–1146. https://doi.org/10.1016/j.compscitech.2012.03.015

    Article  CAS  Google Scholar 

  16. Starkova O, Aniskevich K, Sevcenko J et al (2021) Relationship between the residual and total strain from creep-recovery tests of polypropylene/multiwall carbon nanotube composites. J Appl Polym Sci 138:49957. https://doi.org/10.1002/app.49957

    Article  CAS  Google Scholar 

  17. Pham GT, Park Y-B, Liang Z et al (2008) Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos Part B Eng 39:209–216. https://doi.org/10.1016/j.compositesb.2007.02.024

    Article  CAS  Google Scholar 

  18. Costa P, Ribeiro S, Lanceros-Mendez S (2015) Mechanical vs. electrical hysteresis of carbon nanotube/styrene–butadiene–styrene composites and their influence in the electromechanical response. Compos Sci Technol 109:1–5. https://doi.org/10.1016/j.compscitech.2015.01.006

    Article  CAS  Google Scholar 

  19. Qi HJ, Boyce MC (2005) Stress–strain behavior of thermoplastic polyurethanes. Mech Mater 37:817–839. https://doi.org/10.1016/j.mechmat.2004.08.001

    Article  Google Scholar 

  20. Lozano-Pérez C, Cauich-Rodríguez JV, Avilés F (2016) Influence of rigid segment and carbon nanotube concentration on the cyclic piezoresistive and hysteretic behavior of multiwall carbon nanotube/segmented polyurethane composites. Compos Sci Technol 128:25–32. https://doi.org/10.1016/j.compscitech.2016.03.010

    Article  CAS  Google Scholar 

  21. Bautista-Quijano JR, Avilés F, Aguilar JO, Tapia A (2010) Strain sensing capabilities of a piezoresistive MWCNT-polysulfone film. Sens Actuators A Phys 159:135–140. https://doi.org/10.1016/j.sna.2010.03.005

    Article  CAS  Google Scholar 

  22. Zhao J, Dai K, Liu C et al (2013) A comparison between strain sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene electrically conductive composites. Compos Part A Appl Sci Manuf 48:129–136. https://doi.org/10.1016/j.compositesa.2013.01.004

    Article  CAS  Google Scholar 

  23. Rodríguez-Uicab O, May-Pat A, Avilés F et al (2013) Influence of processing method on the mechanical and electrical properties of MWCNT/PET composites. J Mater 2013:1–10. https://doi.org/10.1155/2013/656372

    Article  CAS  Google Scholar 

  24. Li S, Feng Y, Li Y et al (2016) Transparent and flexible films of horizontally aligned carbon nanotube/polyimide composites with highly anisotropic mechanical, thermal, and electrical properties. Carbon 109:131–140. https://doi.org/10.1016/j.carbon.2016.07.052

    Article  CAS  Google Scholar 

  25. Zhao K, Li S, Huang M et al (2019) Remarkably anisotropic conductive MWCNTs/polypropylene nanocomposites with alternating microlayers. Chem Eng J 358:924–935. https://doi.org/10.1016/j.cej.2018.10.078

    Article  CAS  Google Scholar 

  26. American Society for Testing and Materials (ASTM) D638 (2014) Standard test method for tensile properties of plastics. ASTM Int., West Conshohocken, PA. https://doi.org/10.1520/D0638-14

  27. Chazot CAC, Hart AJ (2019) Understanding and control of interactions between carbon nanotubes and polymers for manufacturing of high-performance composite materials. Compos Sci Technol 183:107795. https://doi.org/10.1016/j.compscitech.2019.107795

    Article  CAS  Google Scholar 

  28. Schawe JEK, Pötschke P, Alig I (2017) Nucleation efficiency of fillers in polymer crystallization studied by fast scanning calorimetry: carbon nanotubes in polypropylene. Polymer 116:160–172. https://doi.org/10.1016/j.polymer.2017.03.072

    Article  CAS  Google Scholar 

  29. Moud AA, Javadi A, Nazockdast H et al (2015) Effect of dispersion and selective localization of carbon nanotubes on rheology and electrical conductivity of polyamide 6 (PA6), polypropylene (PP), and PA6/PP nanocomposites. J Polym Sci Part B Polym Phys 53:368–378. https://doi.org/10.1002/polb.23638

    Article  CAS  Google Scholar 

  30. Gorrasi G, Romeo V, Sannino D et al (2007) Carbon nanotube induced structural and physical property transitions of syndiotactic polypropylene. Nanotechnology 18:275703. https://doi.org/10.1088/0957-4484/18/27/275703

    Article  CAS  Google Scholar 

  31. Holmes DR, Palmer RP (1958) The orientation of the crystalline and amorphous regions in polyethylene film. J Polym Sci 31:345–358. https://doi.org/10.1002/pol.1958.1203112311

    Article  CAS  Google Scholar 

  32. Wang Q, Dai J, Li W et al (2008) The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos Sci Technol 68:1644–1648. https://doi.org/10.1016/j.compscitech.2008.02.024

    Article  CAS  Google Scholar 

  33. Sennett M, Welsh E, Wright JB et al (2003) Dispersion and alignment of carbon nanotubes in polycarbonate. Appl Phys A 76:111–113. https://doi.org/10.1007/s00339-002-1449-x

    Article  CAS  Google Scholar 

  34. Deng F, Zheng Q-S (2008) An analytical model of effective electrical conductivity of carbon nanotube composites. Appl Phys Lett 92:071902. https://doi.org/10.1063/1.2857468

    Article  CAS  Google Scholar 

  35. Mohiuddin M, Hoa SV (2013) Estimation of contact resistance and its effect on electrical conductivity of CNT/PEEK composites. Compos Sci Technol 79:42–48. https://doi.org/10.1016/j.compscitech.2013.02.004

    Article  CAS  Google Scholar 

  36. Simmons JG (1963) Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys 34:2581–2590. https://doi.org/10.1063/1.1702682

    Article  Google Scholar 

  37. Liu Y, Truss RW (1994) A study of tensile yielding of isotactic polypropylene. J Polym Sci Part B Polym Phys 32:2037–2047. https://doi.org/10.1002/polb.1994.090321210

    Article  CAS  Google Scholar 

  38. Chiacchiarelli LM, Rallini M, Monti M et al (2013) The role of irreversible and reversible phenomena in the piezoresistive behavior of graphene epoxy nanocomposites applied to structural health monitoring. Compos Sci Technol 80:73–79. https://doi.org/10.1016/j.compscitech.2013.03.009

    Article  CAS  Google Scholar 

  39. Ku-Herrera JJ, Avilés F (2012) Cyclic tension and compression piezoresistivity of carbon nanotube/vinyl ester composites in the elastic and plastic regimes. Carbon 50:2592–2598. https://doi.org/10.1016/j.carbon.2012.02.018

    Article  CAS  Google Scholar 

  40. Zhang Z, Wang W, Yang J et al (2016) Excellent electroactive shape memory performance of EVA/PCL/CNT blend composites with selectively localized CNTs. J Phys Chem C 120:22793–22802. https://doi.org/10.1021/acs.jpcc.6b06345

    Article  CAS  Google Scholar 

  41. Downes R, Wang S, Haldane D et al (2015) Strain-induced alignment mechanisms of carbon nanotube networks. Adv Eng Mater 17:349–358. https://doi.org/10.1002/adem.201400045

    Article  CAS  Google Scholar 

  42. Sengezer EC, Seidel GD, Bodnar RJ (2017) Anisotropic piezoresistivity characteristics of aligned carbon nanotube-polymer nanocomposites. Smart Mater Struct 26:095027. https://doi.org/10.1088/1361-665X/aa78c3

    Article  Google Scholar 

  43. Drozdov AD (2011) Multi-cycle viscoplastic deformation of polypropylene. Comput Mater Sci 50:1991–2000. https://doi.org/10.1016/j.commatsci.2011.01.045

    Article  CAS  Google Scholar 

  44. Ariyama T (1993) Cyclic deformation and relaxation characteristics in polypropylene. Polym Eng Sci 33:18–25. https://doi.org/10.1002/pen.760330103

    Article  CAS  Google Scholar 

  45. Fukahori Y (2005) New progress in the theory and model of carbon black reinforcement of elastomers. J Appl Polym Sci 95:60–67. https://doi.org/10.1002/app.20802

    Article  CAS  Google Scholar 

  46. Bueche F (1960) Molecular basis for the Mullins effect. J Appl Polym Sci 4:107–114. https://doi.org/10.1002/app.1960.070041017

    Article  CAS  Google Scholar 

  47. Pérez-Aranda C, Valdez-Nava Z, Gamboa F et al (2020) Electro-mechanical properties of thermoplastic polyurethane films and tubes modified by hybrid carbon nanostructures for pressure sensing. Smart Mater Struct 29:115021. https://doi.org/10.1088/1361-665X/aba9e6

    Article  Google Scholar 

  48. Grytten F, Daiyan H, Polanco-Loria M, Dumoulin S (2009) Use of digital image correlation to measure large-strain tensile properties of ductile thermoplastics. Polym Test 28:653–660. https://doi.org/10.1016/j.polymertesting.2009.05.009

    Article  CAS  Google Scholar 

  49. Pinto VC, Ramos T, Alves ASF et al (2017) Dispersion and failure analysis of PLA, PLA/GNP and PLA/CNT-COOH biodegradable nanocomposites by SEM and DIC inspection. Eng Fail Anal 71:63–71. https://doi.org/10.1016/j.engfailanal.2016.06.009

    Article  CAS  Google Scholar 

  50. Yu Y, Zheng G, Dai K et al (2021) Hollow-porous fibers for intrinsically thermally insulating textiles and wearable electronics with ultrahigh working sensitivity. Mater Horiz 8:1037–1046. https://doi.org/10.1039/D0MH01818J

    Article  CAS  Google Scholar 

  51. Ivanyts’kyi YL, Mol’kov YV, Kun’ PS et al (2015) Determination of the local strains near stress concentrators by the digital image correlation technique. Mater Sci 50:488–495. https://doi.org/10.1007/s11003-015-9746-7

    Article  Google Scholar 

  52. Tretyakova T, Wildemann V (2017) Study of the spatial-time inhomogeneity of inelastic deformation and failure in bodies with concentrators by using the digital image correlation and infrared analysis. Procedia Struct Integr 5:318–324. https://doi.org/10.1016/j.prostr.2017.07.177

    Article  Google Scholar 

  53. Lesser AJ (1995) Changes in mechanical behavior during fatigue of semicrystalline thermoplastics. J Appl Polym Sci 58:869–879. https://doi.org/10.1002/app.1995.070580504

    Article  CAS  Google Scholar 

  54. Wichmann MHG, Buschhorn ST, Gehrmann J, Schulte K (2009) Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load. Phys Rev B 80:245437. https://doi.org/10.1103/PhysRevB.80.245437

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon research supported by the US Office of Naval Research Global under award number N62909-19-1-2119. AB acknowledges CONACYT support for his doctoral scholarship. The authors are thankful to Carlos Cupul-Manzano and Miguel Rivero-Ayala for their diligent support with composite manufacturing, as well as to Santiago Duarte-Aranda for SEM imaging. Authors also acknowledge the DIC technical assistance of Cesar Perez-Aranda and Pedro Ayuso-Faber, as well as to Mario Bonillas for the artistic video clip edition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Avilés.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 20446 kb)

Supplementary file2 (PDF 792 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balam, A., Cruz-Estrada, R.H., Castillo-Atoche, A. et al. Investigation of directional effects on the electrical conductivity and piezoresistivity of carbon nanotube/polypropylene composites obtained by extrusion. J Mater Sci 56, 14570–14586 (2021). https://doi.org/10.1007/s10853-021-06223-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06223-3

Navigation