Skip to main content
Log in

Facile fabrication of three-dimensional thermal conductive composites with synergistic effect of multidimensional fillers

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermal conductive polymer composites are promising in the application of rapidly developing modern technology. Here, a facile method to fabricate three-dimensional thermal conductive composites with multidimensional fillers was reported. One-dimensional AgNW were used to bridge the randomly dispersing two-dimensional BNNS together in poly(dimethylsiloxane) (PDMS) to form thermal conductive networks. The through-plane thermal conductivity (0.64 W m−1 K−1) of composite 2wt%AgNW/20wt%BNNS/PDMS was 237% higher than that of matrix PDMS (0.19 W m−1 K−1), while the composites still maintained good electrically insulating. A series of theoretical models were used to describe the thermal conductivity as a function of BNNS contents with or without the presence of AgNW. The synergistic effect between BNNS and AgNW was verified from the calculation of interfacial thermal resistance, which decreases from 1.06 × 10–6 m2 K W−1 for system without AgNW to 6.14 × 10–9 m2 K W−1 for system with 2 wt% AgNW. This synergistic strategy via multidimensional fillers supported the methodological possibility of returning to simplicity from various template approaches which were limited in shape and size. It was expected to extend the understanding of available theory and predict the potential formation of 3D thermal conductive networks in other systems with multidimensional fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhang P, Ding X, Wang Y, Shu M, Gong Y, Zheng K, Tian X, Zhang X (2019) Low-melting-point alloy continuous network construction in a polymer matrix for thermal conductivity and electromagnetic shielding enhancement. ACS Appl Polym Mater 1(8):2006–2014. https://doi.org/10.1021/acsapm.9b00258

    Article  CAS  Google Scholar 

  2. Chen J, Huang XY, Zhu YK, Jiang PK (2017) Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv Funct Mater. https://doi.org/10.1002/adfm.201604754

    Article  Google Scholar 

  3. Li Y, Tian X, Yang W, Li Q, Hou L, Zhu Z, Tang Y, Wang M, Zhang B, Pan T, Li Y (2019) Dielectric composite reinforced by in-situ growth of carbon nanotubes on boron nitride nanosheets with high thermal conductivity and mechanical strength. Chem Eng J 358:718–724. https://doi.org/10.1016/j.cej.2018.10.004

    Article  CAS  Google Scholar 

  4. Owais M, Zhao J, Imani A, Wang G, Zhang H, Zhang Z (2019) Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Compos A Appl Sci Manuf 117:11–22. https://doi.org/10.1016/j.compositesa.2018.11.006

    Article  CAS  Google Scholar 

  5. Kim K, Kim M, Hwang Y, Kim J (2014) Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceram Int 40(1):2047–2056. https://doi.org/10.1016/j.ceramint.2013.07.117

    Article  CAS  Google Scholar 

  6. Chen C, Wang H, Xue Y, Xue Z, Liu H, Xie X, Mai Y-W (2016) Structure, rheological, thermal conductive and electrical insulating properties of high-performance hybrid epoxy/nanosilica/AgNWs nanocomposites. Compos Sci Technol 128:207–214. https://doi.org/10.1016/j.compscitech.2016.04.005

    Article  CAS  Google Scholar 

  7. Zhou YC, Liu F (2016) High-performance polyimide nanocomposites with core-shell AgNWs@BN for electronic packagings. Appl Phys Lett. https://doi.org/10.1063/1.4961625

    Article  Google Scholar 

  8. Oluwalowo A, Nguyen N, Zhang SL, Park JG, Liang R (2019) Electrical and thermal conductivity improvement of carbon nanotube and silver composites. Carbon 146:224–231. https://doi.org/10.1016/j.carbon.2019.01.073

    Article  CAS  Google Scholar 

  9. Che J, Wu K, Lin Y, Wang K, Fu Q (2017) Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy. Compos A Appl Sci Manuf 99:32–40. https://doi.org/10.1016/j.compositesa.2017.04.001

    Article  CAS  Google Scholar 

  10. Sun JJ, Yao YM, Zeng XL, Pan GR, Hu JT, Huang Y, Sun R, Xu JB, Wong CP (2017) Preparation of boron nitride nanosheet/nanofibrillated cellulose nanocomposites with ultrahigh thermal conductivity via engineering interfacial thermal resistance. Adv Mater Interfaces. https://doi.org/10.1002/admi.201700563

    Article  Google Scholar 

  11. Xu X, Hu R, Chen M, Dong J, Xiao B, Wang Q, Wang H (2020) 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125447

    Article  Google Scholar 

  12. Li B, Dong S, Wu X, Wang C, Wang X, Fang J (2017) Anisotropic thermal property of magnetically oriented carbon nanotube/graphene polymer composites. Compos Sci Technol 147:52–61. https://doi.org/10.1016/j.compscitech.2017.05.006

    Article  CAS  Google Scholar 

  13. Jin X, Li W, Liu Y, Gan W (2020) Self-constructing thermal conductive filler network via reaction-induced phase separation in BNNSs/epoxy/polyetherimide composites. Compos A Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2019.105727

    Article  Google Scholar 

  14. Song S, Wang J, Liu C, Wang J, Zhang Y (2019) A facile route to fabricate thermally conductive and electrically insulating polymer composites with 3D interconnected graphene at an ultralow filler loading. Nanoscale 11(32):15234–15244. https://doi.org/10.1039/c9nr05153h

    Article  CAS  Google Scholar 

  15. LiHsu T-LSL-C (2010) Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. J Phys Chem B. https://doi.org/10.1021/jp101857w

    Article  Google Scholar 

  16. Sun J, Wang D, Yao Y, Zeng X, Pan G, Huang Y, Hu J, Sun R, Xu J-B, Wong C-P (2017) Boron nitride microsphere/epoxy composites with enhanced thermal conductivity. High Volt 2(3):147–153. https://doi.org/10.1049/hve.2017.0040

    Article  Google Scholar 

  17. Li Z, Li K, Liu J, Hu S, Wen S, Liu L, Zhang L (2019) Tailoring the thermal conductivity of poly(dimethylsiloxane)/hexagonal boron nitride composite. Polymer 177:262–273. https://doi.org/10.1016/j.polymer.2019.06.012

    Article  CAS  Google Scholar 

  18. Wang S, Shan Z, Huang H (2017) The mechanical properties of nanowires. Adv Sci (Weinh). https://doi.org/10.1002/advs.201600332

    Article  Google Scholar 

  19. Ni C, Zhu Q, Wang J (2018) Mechanical property of metallic nanowires: the shorter is stronger and ductile. Mater Sci Eng A 733:164–169. https://doi.org/10.1016/j.msea.2018.07.054

    Article  CAS  Google Scholar 

  20. Fu C, Yan C, Ren L, Zeng X, Du G, Sun R, Xu J, Wong C-P (2019) Improving thermal conductivity through welding boron nitride nanosheets onto silver nanowires via silver nanoparticles. Compos Sci Technol 177:118–126. https://doi.org/10.1016/j.compscitech.2019.04.026

    Article  CAS  Google Scholar 

  21. Dong J, Cao L, Li Y, Wu Z, Teng C (2020) Largely improved thermal conductivity of PI/BNNS nanocomposites obtained by constructing a 3D BNNS network and filling it with AgNW as the thermally conductive bridges. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2020.108242

    Article  Google Scholar 

  22. Huang Z, Wu W, Drummer D, Liu C, Wang Y, Wang Z (2021) Enhanced the thermal conductivity of Polydimethylsiloxane via a three-dimensional hybrid Boron Nitride@Silver Nanowires thermal network filler. Polymers (Basel). https://doi.org/10.3390/polym13020248

    Article  Google Scholar 

  23. Ma J, Shang T, Ren L, Yao Y, Zhang T, Xie J, Zhang B, Zeng X, Sun R, Xu J-B, Wong C-P (2020) Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material. Chem Eng J. https://doi.org/10.1016/j.cej.2019.122550

    Article  Google Scholar 

  24. Wang X, Wu P (2018) Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading. Chem Eng J 348:723–731. https://doi.org/10.1016/j.cej.2018.04.196

    Article  CAS  Google Scholar 

  25. Liu B, Li Y, Fei T, Han S, Xia C, Shan Z, Jiang J (2020) Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123829

    Article  Google Scholar 

  26. Zhang F, Ye C, Dai W, Le L, Yuan Q, Chee KWA, Ke Y, Jiang N, Lin C-T, Zhan Z, Dai D, He L (2020) Surfactant-assisted fabrication of graphene frameworks endowing epoxy composites with superior thermal conductivity. Chin Chem Lett 31(1):244–248. https://doi.org/10.1016/j.cclet.2019.04.001

    Article  CAS  Google Scholar 

  27. Liu L, Xiao L, Zhang X, Li M, Chang Y, Shang L, Ao Y (2015) Improvement of the thermal conductivity and friction performance of poly(ether ether ketone)/carbon fiber laminates by addition of graphene. RSC Adv 5(71):57853–57859. https://doi.org/10.1039/c5ra10722a

    Article  CAS  Google Scholar 

  28. Jin X, Wang J, Dai L, Wang W, Wu H (2019) Largely enhanced thermal conductive, dielectric, mechanical and anti-dripping performance in polycarbonate/boron nitride composites with graphene nanoplatelet and carbon nanotube. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2019.107862

    Article  Google Scholar 

  29. Xiao C, Guo Y, Tang Y, Ding J, Zhang X, Zheng K, Tian X (2020) Epoxy composite with significantly improved thermal conductivity by constructing a vertically aligned three-dimensional network of silicon carbide nanowires/ boron nitride nanosheets. Compos B Eng. https://doi.org/10.1016/j.compositesb.2020.107855

    Article  Google Scholar 

  30. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017):568–571. https://doi.org/10.1126/science.1194975

    Article  CAS  Google Scholar 

  31. Shen J, Wu J, Wang M, Dong P, Xu J, Li X, Zhang X, Yuan J, Wang X, Ye M, Vajtai R, Lou J, Ajayan PM (2016) Surface tension components based selection of cosolvents for efficient liquid phase exfoliation of 2D materials. Small 12(20):2741–2749. https://doi.org/10.1002/smll.201503834

    Article  CAS  Google Scholar 

  32. Wang Z, Meziani MJ, Patel AK, Priego P, Wirth K, Wang P, Sun Y-P (2019) Boron nitride nanosheets from different preparations and correlations with their material properties. Ind Eng Chem Res 58(40):18644–18653. https://doi.org/10.1021/acs.iecr.9b03930

    Article  CAS  Google Scholar 

  33. Yin C-G, Ma Y, Liu Z-J, Fan J-C, Shi P-H, Xu Q-J, Min Y-L (2019) Multifunctional boron nitride nanosheet/polymer composite nanofiber membranes. Polymer 162:100–107. https://doi.org/10.1016/j.polymer.2018.12.038

    Article  CAS  Google Scholar 

  34. Sheng Lau K, Chin SX, Tan ST, Lim FS, Sea Chang W, Chin Yap C, Jumali MHH, Zakaria S, Chook SW, Chia CH (2019) Silver nanowires as flexible transparent electrode: role of PVP chain length. J Alloys Compd 803:165–171. https://doi.org/10.1016/j.jallcom.2019.06.258

    Article  CAS  Google Scholar 

  35. Fu C, Li Q, Lu J, Mateti S, Cai Q, Zeng X, Du G, Sun R, Chen Y, Xu J, Wong C-P (2018) Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes. Compos Sci Technol 165:322–330. https://doi.org/10.1016/j.compscitech.2018.07.010

    Article  CAS  Google Scholar 

  36. Zhao L, Shi X, Yin Y, Jiang B, Huang Y (2020) A self-healing silicone/BN composite with efficient healing property and improved thermal conductivities. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2019.107919

    Article  Google Scholar 

  37. Xu C, Miao M, Jiang X, Wang X (2018) Thermal conductive composites reinforced via advanced boron nitride nanomaterials. Compos Commun 10:103–109. https://doi.org/10.1016/j.coco.2018.08.002

    Article  Google Scholar 

  38. Zhang P, Ding X, Wang Y, Gong Y, Zheng K, Chen L, Tian X, Zhang X (2019) Segregated double network enabled effective electromagnetic shielding composites with extraordinary electrical insulation and thermal conductivity. Compos A Appl Sci Manuf 117:56–64. https://doi.org/10.1016/j.compositesa.2018.11.007

    Article  CAS  Google Scholar 

  39. Zhang Y, Choi JR, Park S-J (2017) Thermal conductivity and thermo-physical properties of nanodiamond-attached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics. Compos A Appl Sci Manuf 101:227–236. https://doi.org/10.1016/j.compositesa.2017.06.019

    Article  CAS  Google Scholar 

  40. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85. https://doi.org/10.1016/j.progpolymsci.2016.03.001

    Article  CAS  Google Scholar 

  41. Zhai S, Zhang P, Xian Y, Zeng J, Shi B (2018) Effective thermal conductivity of polymer composites: theoretical models and simulation models. Int J Heat Mass Transfer 117:358–374. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.067

    Article  CAS  Google Scholar 

  42. Every AG, Tzou Y, Hasselman DPH, Raj R (1992) The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metall Et Mater. https://doi.org/10.1016/0956-7151(92)90205-S

    Article  Google Scholar 

  43. Nan C-W, Liu G, Lin Y, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 85(16):3549–3551. https://doi.org/10.1063/1.1808874

    Article  CAS  Google Scholar 

  44. An D, Cheng SS, Xi S, Zhang ZY, Duan XY, Ren YJ, Li JX, Sun ZJ, Liu YQ, Wong CP (2020) Flexible thermal interfacial materials with covalent bond connections for improving high thermal conductivity. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123151

    Article  Google Scholar 

  45. Feng YZ, Han GJ, Wang B, Zhou XP, Ma JM, Ye YS, Liu CT, Xie XL (2020) Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy. Chem Eng J. https://doi.org/10.1016/j.cej.2019.122402

    Article  Google Scholar 

  46. Hu J, Huang Y, Zeng X, Li Q, Ren L, Sun R, Xu J-B, Wong C-P (2018) Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Compos Sci Technol 160:127–137. https://doi.org/10.1016/j.compscitech.2018.01.045

    Article  CAS  Google Scholar 

  47. Liu Z, Li J, Liu X (2020) Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties. ACS Appl Mater Interfaces 12(5):6503–6515. https://doi.org/10.1021/acsami.9b21467

    Article  CAS  Google Scholar 

  48. Im H, Kim J (2012) Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon 50(15):5429–5440. https://doi.org/10.1016/j.carbon.2012.07.029

    Article  CAS  Google Scholar 

  49. Bonnet P, Sireude D, Garnier B, Chauvet O (2007) Thermal properties and percolation in carbon nanotube-polymer composites. Appl Phys Lett. https://doi.org/10.1063/1.2813625

    Article  Google Scholar 

  50. Zeng X, Yao Y, Gong Z, Wang F, Sun R, Xu J, Wong CP (2015) Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 11(46):6205–6213. https://doi.org/10.1002/smll.201502173

    Article  CAS  Google Scholar 

  51. Pan G, Yao Y, Zeng X, Sun J, Hu J, Sun R, Xu JB, Wong CP (2017) Learning from natural nacre: constructing layered polymer composites with high thermal conductivity. ACS Appl Mater Interfaces 9(38):33001–33010. https://doi.org/10.1021/acsami.7b10115

    Article  CAS  Google Scholar 

  52. Yao Y, Sun J, Zeng X, Sun R, Xu JB, Wong CP (2018) Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small. https://doi.org/10.1002/smll.201704044

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (grant number51603121) and Tengfei Talent Funding of Shanghai University of Engineering Science (2017RC462017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weizhen Li or Wenjun Gan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Li, W., Jin, X. et al. Facile fabrication of three-dimensional thermal conductive composites with synergistic effect of multidimensional fillers. J Mater Sci 56, 12671–12685 (2021). https://doi.org/10.1007/s10853-021-06105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06105-8

Navigation