Skip to main content
Log in

Infrared spectroscopy of graphene nanoribbons and aromatic compounds with sp3C–H (methyl or methylene groups)

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene nanoribbon (GNR) has attracted attention because of the adjustable band gap, depending on the width and functional groups. The introduction of sp3C–H on edges is one of the choices to reduce the agglomeration between GNRs and to change their various properties. Infrared spectroscopy is among the powerful tools to analyze the edge structures of carbon materials, but the number of detailed reports is almost nonexistent for sp3C–H in carbon materials. In this work, the influence of the presence of sp3C–H on the peak position of sp2C–H on zigzag and armchair edges of GNR was revealed by comparing experimental and computational infrared spectra of aromatic compounds. The introduction of methylene and methyl groups next to sp2C–H affected peak positions of in-plane stretching and out-of-plane bending vibration of sp2C–H. The peak position of sp2C–H was further shifted by introducing methylene and methyl groups on both sides of sp2C–H. The presence of either methylene or methyl groups can be clearly distinguished from the difference in coupled vibration of out-of-plane vibration of sp2C–H and quadrant stretching vibration of C=C because the presence of methylene groups affects the conjugated system significantly, whereas methyl groups did not affect the conjugated system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Marmolejo JMT, Velasco JM (2016) Review on graphene nanoribbon devices for logic applications. Microelectronics J 48:18–38

    Article  CAS  Google Scholar 

  2. Celis A, Nair MN, Taleb-Ibrahimi A, Conrad EH, Berger C, Heer WAd, Tejeda A (2016) Graphene nanoribbons: fabrication, properties and devices. J Phys D Appl Phys 49:143001

    Article  CAS  Google Scholar 

  3. Johnson AP, Gangadharappa HV, Pramod K (2020) Graphene nanoribbons: A promising nanomaterial for biomedical applications. J Control Release 325:141–162

    Article  CAS  Google Scholar 

  4. Terrones M, Botello MAR, Campos DJ, López UF, Vega CYI, Rodríguez MFJ, Elías AL, Muñoz SE, Cano MAG, Charlier JC, Terrones H (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5:351–372

    Article  CAS  Google Scholar 

  5. Chen YC, Oteyza DGd, Pedramrazi Z, Chen C, Fischer FR, Crommie MF (2013) Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7:6123–6128

    Article  CAS  Google Scholar 

  6. Merino DN, Garcia LA, Carbonell SE, Li J, Corso M, Colazzo L, Sedona F, Sánchez PD, Pascual JI, Oteyza DGd (2017) Width-dependent band gap in armchair graphene nanoribbons reveals fermi level pinning on Au(111). ACS Nano 11:11661–11668

    Article  CAS  Google Scholar 

  7. Wagner P, Ewels CP, Adjizian JJ, Magaud L, Pochet P, Roche S, Lopez BA, Ivanovskaya VV, Yaya A, Rayson M, Briddon P, Humbert B (2013) Band gap engineering via edge-functionalization of graphene nanoribbons. J Phys Chem C 117:26790–26796

    Article  CAS  Google Scholar 

  8. Vo TH, Shekhirev M, Kunkel DA, Orange F, Guinel MJF, Enders A, Sinitskii A (2014) Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons. Chem Commun 50:4172–4174

    Article  CAS  Google Scholar 

  9. Pawlak R, Liu X, Ninova S, D’Astolfo P, Drechsel C, Sangtarash S, Häner R, Decurtins S, Sadeghi H, Lambert CJ, Aschauer U, Liu SX, Meyer E (2020) Bottom-up synthesis of nitrogen-doped porous graphene nanoribbons. J Am Chem Soc 142:12568–12573

    Article  CAS  Google Scholar 

  10. Wang XY, Urgel JI, Barin GB, Eimre K, Giovannantonio MD, Milani A, Tommasini M, Pignedoli CA, Ruffieux P, Feng X, Fasel R, Müllen K, Narita A (2018) Bottom-up synthesis of heteroatom-doped chiral graphene nanoribbons. J Am Chem Soc 140:9104–9107

    Article  CAS  Google Scholar 

  11. Kawai S, Saito S, Osumi S, Yamaguchi S, Foster AS, Spijker P, Meyer E (2015) Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat Commun 6:8098

    Article  CAS  Google Scholar 

  12. Candini A, Martini L, Chen Z, Mishra N, Convertino D, Coletti C, Narita A, Feng X, Müllen K, Affronte M (2017) High photoresponsivity in graphene nanoribbon field-effect transistor devices contacted with graphene electrodes. J Phys Chem C 121:10620–10625

    Article  CAS  Google Scholar 

  13. Martini L, Chen Z, Mishra N, Barin GB, Fantuzzi P, Ruffieux P, Fasel R, Feng X, Narita A, Coletti C, Müllen K, Candini A (2019) Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes. Carbon 146:36–43

    Article  CAS  Google Scholar 

  14. Li L, Raji ARO, Tour JM (2013) Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv Mater 25:6298–6302

    Article  CAS  Google Scholar 

  15. Saito Y, Ashizawa M, Matsumoto H (2020) Mesoporous, hydrated graphene nanoribbon electrodes for efficient supercapacitors: effect of nanoribbon dispersion on pore structure. Bull Chem Soc Jpn 93:1268–1274

    Article  CAS  Google Scholar 

  16. Liu M, Tjiu WW, Pan J, Zhang C, Gao W, Liu T (2014) One-step synthesis of graphene nanoribbon–MnO2 hybrids and their all-solid-state asymmetric supercapacitors. Nanoscale 6:4233–4242

    Article  CAS  Google Scholar 

  17. Mazzamuto F, Hung Nguyen H, Apertet Y, Caër C, Chassat C, Saint-Martin J, Dollfus P (2011) Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys Rev B Condens Matter Mater Phys 83:235426

    Article  CAS  Google Scholar 

  18. Sevinçli H, Sevik C, Çağın T, Cuniberti G (2013) A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons. Sci Rep 3:1228

    Article  CAS  Google Scholar 

  19. Saathoff JD, Clancy P (2017) Effect of edge-functionalization on the ease of graphene nanoribbon aggregation in solvent. Carbon 115:154–161

    Article  CAS  Google Scholar 

  20. Han Y, Zhang L, Zhang X, Ruan K, Cui L, Wang Y, Liao L, Wang Z, Jie J (2014) Clean surface transfer of graphene films via an effective sandwich method for organic light-emitting diode applications. J Mater Chem C 2:201–207

    Article  CAS  Google Scholar 

  21. Barin GB, Fairbrother A, Rotach L, Bayle M, Paillet M, Liang L, Meunier V, Hauert R, Dumslaff T, Narita A, Müllen K, Sahabudeen H, Berger R, Feng X, Fasel R, Ruffieux P (2019) Surface-synthesized graphene nanoribbons for room temperature switching devices: substrate transfer and ex situ characterization. ACS Appl Nano Mater 2:2184–2192

    Article  CAS  Google Scholar 

  22. Rafiee MA, Lu W, Thomas AV, Zandiatashbar A, Rafiee J, Tour JM, Koratkar NA (2010) Graphene nanoribbon composites. ACS Nano 4:7415–7420

    Article  CAS  Google Scholar 

  23. Zheng P, Bryan SE, Yang Y, Raghu M, Naeemi A, Meindl JD (2013) Hydrogenation of graphene nanoribbon edges: improvement in carrier transport. IEEE Electron Device Lett 34:707–709

    Article  CAS  Google Scholar 

  24. Gemayel MEI, Narita A, Dössel LF, Sundaram RS, Kiersnowski A, Pisula W, Hansen MR, Ferrari AC, Orgiu E, Feng X, Müllen K, Samorì P (2014) Graphene nanoribbon blends with P3HT for organic electronics. Nanoscale 6:6301–6314

    Article  Google Scholar 

  25. Dumslaff T, Yang B, Maghsoumi A, Velpula G, Mali KS, Castiglioni C, Feyter SD, Tommasini M, Narita A, Feng X, Müllen K (2016) Adding four extra K-regions to hexa-peri-hexabenzocoronene. J Am Chem Soc 138:4726–4729

    Article  CAS  Google Scholar 

  26. Zhong Q, Hu Y, Niu K, Zhang H, Yang B, Ebeling D, Tschakert J, Cheng T, Schirmeisen A, Narita A, Müllen K, Chi L (2019) Benzo-fused periacenes or double helicenes? Different cyclodehydrogenation pathways on surface and in solution. J Am Chem Soc 141:7399–7406

    Article  CAS  Google Scholar 

  27. Schwab MG, Narita A, Osella S, Hu Y, Maghsoumi A, Mavrinsky A, Pisula W, Castiglioni C, Tommasini M, Beljonne D, Feng X, Müllen K (2015) Bottom-up synthesis of necklace-like graphene nanoribbons. Chem Asian J 10:2134–2138

    Article  CAS  Google Scholar 

  28. Cortizo-Lacalle D, Mora-Fuentes JP, Strutyński K, Saeki A, Melle-Franco M, Mateo-Alonso A (2017) Monodisperse N-doped graphene nanoribbons reaching 7.7 nanometers in length. Angew Chem Int Ed Engl 57:703–708

    Article  CAS  Google Scholar 

  29. White DP, Anthony JC, Oyefeso AO (1999) Computational measurement of steric effects: the size of organic substituents computed by ligand repulsive energies. J Org Chem 64:7707–7716

    Article  CAS  Google Scholar 

  30. Zhang X, Goossens K, Li W, Chen X, Chen X, Saxena M, Lee SH, Bielawski CW, Ruoff RS (2017) Structural insights into hydrogenated graphite prepared from fluorinated graphite through Birch−type reduction. Carbon 121:309–321

    Article  CAS  Google Scholar 

  31. Furukawa Y (2006) Vibrational spectroscopy of conducting polymers. Handbook of Vibrational Spectroscopy. John Wiley & Sons Inc, New Jersey

    Book  Google Scholar 

  32. Saenz G, Scott C (2018) Sustainable poly(ether amide)s from lignin-derived precursors. J Polym Sci A Polym Chem 56:2154–2160

    Article  CAS  Google Scholar 

  33. Fujimoto A, Yamada Y, Koinuma M, Sato S (2016) Origins of sp3C peaks in C1s X-ray photoelectron spectra of carbon materials. Anal Chem 88:6110–6114

    Article  CAS  Google Scholar 

  34. Lee SY, Lyu J, Kang S, Lu SJ, Bielawski CW (2018) Ascertaining the carbon hybridization states of synthetic polymers with X-ray induced Auger electron spectroscopy. J Phys Chem C 122:11855–11861

    Article  CAS  Google Scholar 

  35. Zhou XL, Tunmee S, Suzuki T, Phothongkam P, Kanda K, Komatsu K, Kawahara S, Ito H, Saitoh H (2017) Quantitative NEXAFS and solid-state NMR studies of sp3/(sp2 + sp3) ratio in the hydrogenated DLC films. Diam Relat Mater 73:232–324

    Article  CAS  Google Scholar 

  36. Gohda S, Yamada Y, Murata M, Saito M, Kanazawa S, Ono H, Sato S (2020) Bottom-up synthesis of highly soluble carbon materials. J Mater Sci 55:11808–11828. https://doi.org/10.1007/s10853-020-04813-1

    Article  CAS  Google Scholar 

  37. Gohda S, Saito M, Yamada Y, Kanazawa S, Ono H, Sato S (2021) Carbonization of phloroglucinol promoted by heteropoly acids. J Mater Sci 56:2944–2960. https://doi.org/10.1007/s10853-020-05393-w

    Article  CAS  Google Scholar 

  38. Yamada Y, Kawai M, Yorimitsu H, Otsuka S, Takanashi M, Sato S (2018) Carbon materials with zigzag and armchair edges. ACS Appl Mater Interfaces 10:40710–40739

    Article  CAS  Google Scholar 

  39. Cui WG, Lai QB, Zhang L, Wang FM (2010) Quantitative measurements of sp3 content in DLC films with Raman spectroscopy. Surf Coat Tech 205:1995–2019

    Article  CAS  Google Scholar 

  40. Tommasini M, Lucotti A, Alfè M, Ciajolo A, Zerbi G (2016) Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy. Spectrochim Spectrochim Acta Part A 152:134–148

    Article  CAS  Google Scholar 

  41. Russo C, Stanzione F, Tregrossi A, Ciajolo A (2014) Infrared spectroscopy of some carbon-based materials relevant in combustion: qualitative and quantitative analysis of hydrogen. Carbon 74:127–138

    Article  CAS  Google Scholar 

  42. Centrone A, Brambilla L, Renouard T, Gherghel L, Mathis C, Müllen K, Zerbi G (2005) Structure of new carbonaceous materials: the role of vibrational spectroscopy. Carbon 43:1593–1609

    Article  CAS  Google Scholar 

  43. Yamada Y, Masaki S, Sato S (2020) Brominated positions on graphene nanoribbon analyzed by infrared spectroscopy. J Mater Sci 55:10522–10542. https://doi.org/10.1007/s10853-020-04786-1

    Article  CAS  Google Scholar 

  44. Sasaki T, Yamada Y, Sato S (2018) Quantitative analysis of zigzag and armchair edges on carbon materials with and without pentagons using infrared spectroscopy. Anal Chem 90:10724–10731

    Article  CAS  Google Scholar 

  45. Yamada Y, Gohda S, Abe K, Togo T, Shimano N, Sasaki T, Tanaka H, Ono H, Ohba T, Kubo S, Ohkubo T, Sato S (2017) Carbon materials with controlled edge structures. Carbon 122:694–701

    Article  CAS  Google Scholar 

  46. Senda T, Yamada Y, Morimoto M, Nono N, Sogabe T, Kubo S, Sato S (2019) Analyses of oxidation process for isotropic pitch-based carbon fiber using model compounds. Carbon 142:311–326

    Article  CAS  Google Scholar 

  47. Fuente E, Menéndez J, Díez M, Suárez D, Montes MM (2003) Infrared spectroscopy of carbon materials: a quantum chemical study of model compounds. J Phys Chem B 107:6350–6359

    Article  CAS  Google Scholar 

  48. Maltseva E, Mackie CJ, Candian A, Petrignani A, Huang X, Lee TJ, Tielens AGGM, Oomens J, Buma WJ (2018) High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons in the 3 μm region: role of hydrogenation and alkylation. Astron Astrophys 610:A65

    Google Scholar 

  49. Taki M, Otomo N, Otani H, Tomiya S, Uno T, Nagai M (2011) Rapid analysis method for type of oil discharged into sea areas. J Japan Pet Inst 54:103–107

    Article  CAS  Google Scholar 

  50. Liu J, Zhang Qh, Ma F, Sf Z, Zhou Q, Am H (2020) Three-step identification of infrared spectra of similar tree species to pterocarpus santalinus covered with beeswax. J Mol Struct 1218:128484

    Article  CAS  Google Scholar 

  51. Chen R, Xu X, Lu S, Zhang Y, Lo S (2018) Pyrolysis study of waste phenolic fibre-reinforced plastic by thermogravimetry/Fourier transform infrared/mass spectrometry analysis. Energy Convers Manag 165:555–566

    Article  CAS  Google Scholar 

  52. Shen D, Liu G, Zhao J, Xue J, Guan S, Xiao R (2015) Thermo-chemical conversion of lignin to aromatic compounds: effect of lignin source and reaction temperature. J Anal Appl Pyrolysis 112:56–65

    Article  CAS  Google Scholar 

  53. Asemani M, Rabbani AR (2020) Detailed FTIR spectroscopy characterization of crude oil extracted asphaltenes: curve resolve of overlapping bands. J Pet Sci Eng 185:106618

    Article  CAS  Google Scholar 

  54. Parihar A, Sripada P, Bambery K, Garnier G, Bhattacharya S (2017) Investigation of functional group changes in biomass during slow pyrolysis using synchrotron based infra-red microspectroscopy and thermogravimetry-infra-red spectroscopy. J Anal Appl Pyrolysis 127:394–401

    Article  CAS  Google Scholar 

  55. Delarmelina M, Ferreira GB, Ferreira VF, Carneiro JWdM (2016) Vibrational spectroscopy of lapachol, α- and β-lapachone: theoretical and experimental elucidation of the Raman and infrared spectra. Vib Spectrosc 86:311–323

    Article  CAS  Google Scholar 

  56. Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy. Academic Press, Massachusetts, p 198

    Google Scholar 

  57. Langhoff SR, Bauschlicher CW, Hudgins DM, Sandford SA, Allamandola LJ (1998) Infrared spectra of substituted polycyclic aromatic hydrocarbons. J Phys Chem A 102:1632–1646

    Article  CAS  Google Scholar 

  58. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2016) Gaussian 16, revision C.01. Gaussian Inc., Wallingford CT

    Google Scholar 

  59. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem A 100:16502–16513

    Article  CAS  Google Scholar 

  60. Katari M, Nicol E, Steinmetz V, Rest GVD, Carmichael D, Frison G (2017) Improved infrared spectra prediction by DFT from a new experimental database. Chem Eur J 23:8414–8423

    Article  CAS  Google Scholar 

  61. Larkin PJ (2011) Infrared and Raman spectroscopy principles and spectral interpretation. Elsevier Inc., Amsterdam, pp 10–132

    Google Scholar 

Download references

Acknowledgements

This work was supported by Kondo Memorial Foundation in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Yamada.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6947 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanazawa, S., Yamada, Y. & Sato, S. Infrared spectroscopy of graphene nanoribbons and aromatic compounds with sp3C–H (methyl or methylene groups). J Mater Sci 56, 12285–12314 (2021). https://doi.org/10.1007/s10853-021-06001-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06001-1

Navigation