Skip to main content
Log in

Surface deformation of single crystalline copper on different nano-scratching paths

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Anisotropic deformation behavior of single crystalline material under scratching has a significant effect on machining precision in nano-mechanical machining. In the present work, a crystal plasticity finite element model simulating the scratching process is developed, and the established model is validated by comparison with experimental results. (001)-, (101)- and (111)-oriented coppers are selected to investigate the deformation behavior including scratching depth, surface topography and subsurface deformation affected by scratching path. Further, the deformation mechanisms of (001)-, (101)- and (111)-oriented coppers are analyzed to be caused by deformation of slip systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Daiguji H, Yang PD, Szeri AJ, Majumdar A (2004) Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett 4:2315. https://doi.org/10.1021/nl0489945

    Article  CAS  Google Scholar 

  2. Malekian M, Park SS, Strathearn D, Mostofa MG, Jun MBG (2010) Atomic force microscope probe-based nanometric scribing. J Micromech Microeng. https://doi.org/10.1088/0960-1317/20/11/115016

    Article  Google Scholar 

  3. Kassavetis S, Mitsakakis K, Logothetidis S (2007) Nanoscale patterning and deformation of soft matter by scanning probe microscopy. Mater Sci Eng C 27:1456. https://doi.org/10.1016/j.msec.2006.08.004

    Article  CAS  Google Scholar 

  4. Kawasegi N, Takano N, Oka D et al (2006) Nanomachining of silicon surface using atomic force microscope with diamond tip. J Manuf Sci Eng-Trans ASME 128:723–729

    Article  Google Scholar 

  5. Zambaldi C, Raabe D (2010) Plastic anisotropy of gamma-TiAl revealed by axisymmetric indentation. Acta Mater 58:3516. https://doi.org/10.1016/j.actamat.2010.02.025

    Article  CAS  Google Scholar 

  6. Wang Y, Raabe D, Kluber C, Roters F (2004) Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater 52:2229. https://doi.org/10.1016/j.actamat.2004.01.016

    Article  CAS  Google Scholar 

  7. Liu M, Lu C, Tieu KA, Peng CT, Kong C (2015) A combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation. Sci Rep. https://doi.org/10.1038/srep15072

    Article  Google Scholar 

  8. Zhu J, Xiong C, Ma L et al (2020) Coupled effect of scratching direction and speed on nano-scratching behavior of single crystalline copper. Tribol Int. https://doi.org/10.1016/j.triboint.2020.106385

    Article  Google Scholar 

  9. Chavoshi SZ, Xu S (2018) A review on micro- and nanoscratching/tribology at high temperatures: instrumentation and experimentation. J Mater Eng Perform 27:3844. https://doi.org/10.1007/s11665-018-3493-5

    Article  CAS  Google Scholar 

  10. Brinckmann S, Dehm G (2015) Nanotribology in austenite: plastic plowing and crack formation. Wear 338:436. https://doi.org/10.1016/j.wear.2015.05.001

    Article  CAS  Google Scholar 

  11. Xu N, Han W, Wang Y, Li J, Shan Z (2017) Nanoscratching of copper surface by CeO2. Acta Mater 124:343. https://doi.org/10.1016/j.actamat.2016.11.008

    Article  CAS  Google Scholar 

  12. Hodge AM, Nieh TG (2004) Evaluating abrasive wear of amorphous alloys using nanoscratch technique. Intermetallics 12:741. https://doi.org/10.1016/j.intermet.2004.02.014

    Article  CAS  Google Scholar 

  13. Vencl A, Manic N, Popovic V, Mrdak M (2010) Possibility of the abrasive wear resistance determination with scratch tester. Tribol Lett 37:591. https://doi.org/10.1007/s11249-009-9556-x

    Article  CAS  Google Scholar 

  14. Charitidis CA (2010) Nanomechanical and nanotribological properties of carbon-based thin films: a review. Int J Refract Met Hard Mater 28:51. https://doi.org/10.1016/j.ijrmhm.2009.08.003

    Article  CAS  Google Scholar 

  15. Ha S, Jang J-H, Kim K (2017) Finite element implementation of dislocation-density-based crystal plasticity model and its application to pure aluminum crystalline materials. Int J Mech Sci 120:249. https://doi.org/10.1016/j.ijmecsci.2016.11.011

    Article  Google Scholar 

  16. Choi SH, Kim EY, Woo W, Han SH, Kwak JH (2013) The effect of crystallographic orientation on the micromechanical deformation and failure behaviors of DP980 steel during uniaxial tension. Int J Plast 45:85. https://doi.org/10.1016/j.ijplas.2012.11.013

    Article  CAS  Google Scholar 

  17. Choi SH, Kim DW, Seong BS, Rollett AD (2011) 3-D simulation of spatial stress distribution in an AZ31 Mg alloy sheet under in-plane compression. Int J Plast 27:1702. https://doi.org/10.1016/j.ijplas.2011.05.014

    Article  CAS  Google Scholar 

  18. Wei P, Lu C, Tieu K, Su L, Deng G, Huang W (2017) A study on the texture evolution mechanism of nickel single crystal deformed by high pressure torsion. Mater Sci Eng A 684:239. https://doi.org/10.1016/j.msea.2016.11.098

    Article  CAS  Google Scholar 

  19. Wang Z, Zhang J, Xu Z et al (2019) Crystal plasticity finite element modeling and simulation of diamond cutting of polycrystalline copper. J Manuf Process 38:187. https://doi.org/10.1016/j.jmapro.2019.01.007

    Article  Google Scholar 

  20. Wang Z, Zhang H, Li Z et al (2019) Crystal plasticity finite element simulation and experiment investigation of nanoscratching of single crystalline copper. Wear 430:100. https://doi.org/10.1016/j.wear.2019.04.024

    Article  CAS  Google Scholar 

  21. Becker R, Butler JF, Hu H, Lalli LA (1991) Analysis of an aluminum single-crystal with unstable initial orientation (001) 110 in channel die compression. Metall Trans A 22:45. https://doi.org/10.1007/bf03350948

    Article  Google Scholar 

  22. Zhao Z, Ramesh M, Raabe D, Cuitino AM, Radovitzky R (2008) Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystal. Int J Plast 24:2278. https://doi.org/10.1016/j.ijplas.2008.01.002

    Article  CAS  Google Scholar 

  23. Zhao Z, Kuchnicki S, Radovitzky R, Cultino A (2007) Influence of in-grain mesh resolution on the prediction of deformation textures in fcc polycrystals by crystal plasticity FEM. Acta Mater 55:2361. https://doi.org/10.1016/j.actamat.2006.11.035

    Article  CAS  Google Scholar 

  24. Eisenlohr P, Roters F (2008) Selecting a set of discrete orientations for accurate texture reconstruction. Comput Mater Sci 42:670. https://doi.org/10.1016/j.commatsci.2007.09.015

    Article  CAS  Google Scholar 

  25. Raabe D, Roters F (2004) Using texture components in crystal plasticity finite element simulations. Int J Plast 20:339. https://doi.org/10.1016/s0749-6419(03)00092-5

    Article  Google Scholar 

  26. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58:1152. https://doi.org/10.1016/j.actamat.2009.10.058

    Article  CAS  Google Scholar 

  27. Roters F, Diehl M, Shanthraj P et al (2019) DAMASK–The dusseldorf advanced material simulation kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Comput Mater Sci 158:420. https://doi.org/10.1016/j.commatsci.2018.04.030

    Article  CAS  Google Scholar 

  28. Wang ZF, Zhang JJ, ul Hassan H et al (2018) Coupled effect of crystallographic orientation and indenter geometry on nanoindentation of single crystalline copper. Int J Mech Sci 148:531–539. https://doi.org/10.1016/j.ijmecsci.2018.09.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from National Natural Science Foundation of China (No. 51875373), the Science and Technology Foundation of Sichuan (2019YJ0093) and the Fundamental Research Funds for Central Universities (No. 0060204153006). Q.Z. would also like to acknowledge the supports from the China Postdoctoral Science Foundation (Nos. 2018M643469, 2019T120836).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Zhou, Q., Huang, Y. et al. Surface deformation of single crystalline copper on different nano-scratching paths. J Mater Sci 56, 10640–10652 (2021). https://doi.org/10.1007/s10853-021-05948-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05948-5

Navigation