Skip to main content
Log in

Bioinspired oxygen selective membrane for Zn–air batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zn–air and other metal–air batteries suffer from limited shelf life due to carbonization by CO2 and evaporation of water through the cathode. Bioinspired oxygen selective membranes (OSMs) with common similarities to lungs alveoli were prepared and applied as an oxygen selective passive membrane on the cathode of the Zn–air batteries, which limit CO2 and H2O transport while actively supporting O2 flux. The OSMs were prepared from polycarbonate and iron(II) phthalocyanine in volatile chlorogenic solvent (“breath figures self-assembly” mechanism) under controlled humidity conditions. Membranes were characterized by scanning electron microscopy, UV–visible spectroscopy, and gas chromatography. These membranes contain polycarbonate in a pulmonary alveolus-like structure of 0.2–4.0 microns thick, inclosing iron(II) phthalocyanine as an oxygen carrier molecule. The electrochemical measurements are performed to evaluate the membrane O2 permeability in both half- and full-cell Zn–air configurations. The effect of relative humidity, iron(II) phthalocyanine, and polycarbonate content is investigated during the optimization of membrane permeabilities and selectivity results. By installing the OSM on top of the cathode of a Zn–air prototype cell, we were able to reduce the water evaporation by 88% while supporting an oxygen limiting current of 73 mA cm−2OSM with an OSM (PC 11%, FePc 9.1%).

Graphical abstract

In this contribution, we present an oxygen selective membrane (OSM) to increase the shelf life of the Zn–air cell. By applying OSM on top of the Zn–air cell cathode, we successfully demonstrated the reduction in the water evaporation by 88% while supporting an oxygen limiting current of 73 mA cm−2OSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Fig. 7

Similar content being viewed by others

References

  1. Blurton KF, Sammells AF (1979) Metal/air batteries: their status and potential—a review. J Power Sources 4:263–279. https://doi.org/10.1016/0378-7753(79)80001-4

    Article  CAS  Google Scholar 

  2. Lee JS, Kim ST, Cao R et al (2011) Metal-air batteries with high energy density: Li-air versus Zn-air. Adv Energy Mater 1:34–50. https://doi.org/10.1002/aenm.201000010

    Article  CAS  Google Scholar 

  3. Gelman D, Shvartsev B, Ein-Eli Y (2014) Aluminum-air battery based on an ionic liquid electrolyte. J Mater Chem A 2:20237–20242. https://doi.org/10.1039/c4ta04721d

    Article  CAS  Google Scholar 

  4. Li CS, Sun Y, Gebert F, Chou SL (2017) Current progress on rechargeable magnesium–air battery. Adv Energy Mater 7:1–11. https://doi.org/10.1002/aenm.201700869

    Article  CAS  Google Scholar 

  5. Li Y, Yadegari H, Li X et al (2013) Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium–air batteries. Chem Commun 49:11731–11733. https://doi.org/10.1039/C3CC46606J

    Article  CAS  Google Scholar 

  6. Kraytsberg A, Ein-Eli Y (2011) Review on Li-air batteries—opportunities, limitations and perspective. J Power Sources 196:886–893. https://doi.org/10.1016/j.jpowsour.2010.09.031

    Article  CAS  Google Scholar 

  7. Xu M, Ivey DG, Xie Z, Qu W (2015) Rechargeable Zn-air batteries: progress in electrolyte development and cell configuration advancement. J Power Sources 283:358–371. https://doi.org/10.1016/j.jpowsour.2015.02.114

    Article  CAS  Google Scholar 

  8. Wang Q, Lei Y, Chen Z et al (2018) Fe/Fe 3 C@ C nanoparticles encapsulated in N-doped graphene–CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn–air batteries. J Mater Chem A 6:516–526

    Article  CAS  Google Scholar 

  9. Guo Y, Yuan P, Zhang J et al (2018) Carbon nanosheets containing Discrete Co-N x-B y-C active sites for efficient oxygen electrocatalysis and rechargeable Zn–air batteries. ACS Nano 12:1894–1901

    Article  CAS  Google Scholar 

  10. Wei L, Karahan HE, Zhai S et al (2017) Amorphous bimetallic oxide–graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Adv Mater 29:1701410

    Article  Google Scholar 

  11. Shinde SS, Lee C-H, Sami A et al (2017) Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. ACS Nano 11:347–357

    Article  CAS  Google Scholar 

  12. Li B, Geng D, Lee XS et al (2015) Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn–air batteries. Chem Commun 51:8841–8844

    Article  CAS  Google Scholar 

  13. Lu Q, Guo Y, Mao P et al (2020) Rich atomic interfaces between sub-1 nm RuOx clusters and porous Co3O4 nanosheets boost oxygen electrocatalysis bifunctionality for advanced Zn-air batteries. Energy Storage Mater 32:20–29. https://doi.org/10.1016/j.ensm.2020.06.015

    Article  Google Scholar 

  14. Lu Q, Yu J, Zou X et al (2019) Self-catalyzed rowth of Co, N-Codoped CNTs on carbon-encased CoSx surface: a noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn–air batteries. Adv Funct Mater 29:1904481. https://doi.org/10.1002/adfm.201904481

    Article  CAS  Google Scholar 

  15. Pan J, Tian XL, Zaman S et al (2019) Recent progress on transition metal oxides as bifunctional catalysts for Lithium-Air and Zinc-Air batteries. Batter Supercaps 2:336–347. https://doi.org/10.1002/batt.201800082

    Article  CAS  Google Scholar 

  16. Ismail AF, Khulbe KC, Matsuura T (2015) Gas separation membranes: Polymeric and inorganic

  17. Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449–456. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  18. Crowther O, Salomon M (2012) Oxygen selective membranes for Li-air (O 2) batteries. Membranes (Basel) 2:216–227. https://doi.org/10.3390/membranes2020216

    Article  CAS  Google Scholar 

  19. Robeson LM, Freeman BD, Paul DR, Rowe BW (2009) An empirical correlation of gas permeability and permselectivity in polymers and its theoretical basis. J Memb Sci 341:178–185. https://doi.org/10.1016/j.memsci.2009.06.005

    Article  CAS  Google Scholar 

  20. Preethi N, Shinohara H, Nishide H (2006) Reversible oxygen-binding and facilitated oxygen transport in membranes of polyvinylimidazole complexed with cobalt-phthalocyanine. React Funct Polym 66:851–855. https://doi.org/10.1016/j.reactfunctpolym.2005.11.013

    Article  CAS  Google Scholar 

  21. Nishide H, Kawakami H, Suzuki T et al (1990) Enhanced stability and facilitation in the oxygen transport through Cobalt Porphyrin Polymer membranes. Macromolecules 23:3714–3716. https://doi.org/10.1021/ma00217a031

    Article  CAS  Google Scholar 

  22. Suzuki T, Yasuda H, Nishide H et al (1996) Electrochemical measurement of facilitated oxygen transport through a polymer membrane containing cobaltporphyrin as a fixed carrier. J Memb Sci 112:155–160. https://doi.org/10.1016/0376-7388(95)00291-X

    Article  CAS  Google Scholar 

  23. Ghani F, Kristen J, Riegler H (2012) Solubility properties of unsubstituted metal phthalocyanines in different types of solvents. J Chem Eng Data 57(2):439–449. https://doi.org/10.1021/je2010215

    Article  CAS  Google Scholar 

  24. Miedema PS, van Schooneveld MM, Bogerd R et al (2011) Oxygen binding to cobalt and iron phthalocyanines as determined from in situ X-ray absorption spectroscopy. J Phys Chem C 115:25422–25428. https://doi.org/10.1021/jp209295f

    Article  CAS  Google Scholar 

  25. Baranton S, Coutanceau C, Roux C et al (2005) Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: Tolerance to methanol, stability and kinetics. J Electroanal Chem 577:223–234. https://doi.org/10.1016/j.jelechem.2004.11.034

    Article  CAS  Google Scholar 

  26. Lawton EA (1958) The thermal stability of copper phthalocyanine. J Phys Chem 62:384. https://doi.org/10.1021/j150561a051

    Article  CAS  Google Scholar 

  27. Bormashenko E, Pogreb R, Stanevsky O et al (2005) Formation of honeycomb patterns in evaporated polymer solutions: influence of the molecular weight. Mater Lett 59:3553–3557. https://doi.org/10.1016/j.matlet.2005.06.026

    Article  CAS  Google Scholar 

  28. Nishide H, Tsukahara Y, Tsuchida E (1998) Highly selective oxygen permeation through a Poly(vinylidene dichloride)−cobalt porphyrin membrane: Hopping transport of oxygen via the fixed cobalt porphyrin carrier. J Phys Chem B 102:8766–8770. https://doi.org/10.1021/jp9816317

    Article  CAS  Google Scholar 

  29. Bormashenko E, Malkin A, Musin A et al (2008) Mesoscopic patterning in evaporated polymer solutions: Poly(ethylene glycol) and room-temperature-vulcanized polyorganosilanes/-siloxanes promote formation of honeycomb structures. Macromol Chem Phys 209:567–576. https://doi.org/10.1002/macp.200700552

    Article  CAS  Google Scholar 

  30. Zhou W, Chen J, Li Y et al (2016) Copper mesh templated by breath-figure polymer films as flexible transparent electrodes for organic photovoltaic devices. ACS Appl Mater Interfaces 8:11122–11127. https://doi.org/10.1021/acsami.6b01117

    Article  CAS  Google Scholar 

  31. Bormashenko E, Pogreb R, Stanevsky O et al (2005) Mesoscopic and submicroscopic patterning in thin polymer films: Impact of the solvent. Mater Lett 59:2461–2464. https://doi.org/10.1016/j.matlet.2005.03.015

    Article  CAS  Google Scholar 

  32. Rodríguez-Hernández J (2020) Breath figures: mechanisms of multi-scale patterning and strategies for fabrication and applications of microstructured functional porous surfaces. Springer, Heidelberg

  33. Billon L, Manguian M, Pellerin V et al (2009) Tailoring highly ordered honeycomb films based on ionomer macromolecules by the bottom-up approach. Macromolecules 42:345–356. https://doi.org/10.1021/ma8020568

    Article  CAS  Google Scholar 

  34. Bormashenko E, Balter S, Aurbach D (2012) On the nature of the breath figures self-assembly in evaporated polymer solutions: revisiting physical factors governing the patterning. Macromol Chem Phys 213:1742–1747. https://doi.org/10.1002/macp.201200272

    Article  CAS  Google Scholar 

  35. Bormashenko E, Schechter A, Stanevsky O et al (2008) Free-standing, thermostable, micrometer-scale honeycomb polymer films and their properties. Macromol Mater Eng 293:872–877. https://doi.org/10.1002/mame.200800188

    Article  CAS  Google Scholar 

  36. Li J, Zhang N, Ni D, Sun K (2011) Preparation of honeycomb porous solid oxide fuel cell cathodes by breath figures method. Int J Hydrogen Energy 36:7641–7648. https://doi.org/10.1016/j.ijhydene.2011.03.118

    Article  CAS  Google Scholar 

  37. Bhadra S, Kim NH, Choi JS et al (2010) Hyperbranched poly(benzimidazole-co-benzene) with honeycomb structure as a membrane for high-temperature proton-exchange membrane fuel cells. J Power Sources 195:2470–2477. https://doi.org/10.1016/j.jpowsour.2009.11.083

    Article  CAS  Google Scholar 

  38. Stenzel MH, Barner-Kowollik C, Davis TP (2006) Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. J Polym Sci Part A Polym Chem 44:2363–2375. https://doi.org/10.1002/pola.21334

    Article  CAS  Google Scholar 

  39. Zou X, Liao K, Wang D et al (2020) Water-proof, electrolyte-nonvolatile, and flexible Li-Air batteries via O2-Permeable silica-aerogel-reinforced polydimethylsiloxane external membranes. Energy Storage Mater 27:297–306. https://doi.org/10.1016/j.ensm.2020.02.014

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of Planning & Budgeting Committee/ISRAEL Council for Higher Education (CHE) and Fuel Choice Initiative (Prime Minister Office of ISRAEL), within the framework of “Israel National Research Center for Electrochemical Propulsion (INREP)” and partial support from transportation electric power solutions (TEPS) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Schechter.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krichevski, O., Singh, R.K., Bormashenko, E. et al. Bioinspired oxygen selective membrane for Zn–air batteries. J Mater Sci 56, 9382–9394 (2021). https://doi.org/10.1007/s10853-021-05880-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05880-8

Navigation