Skip to main content
Log in

Silicon nanoparticles with UV range photoluminescence synthesized through cryomilling induced phase transformation and etching

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report silicon nanoparticles with a particle size distribution of ~ 80 nm (mode) through controlled impact mode cryomilling of semiconductor grade silicon wafers at a temperature of 200 K under argon atmosphere. The transmission microscopic characterization of these particles establishes a partial transformation of the crystalline silicon into an amorphous phase yielding a two-phase microstructure for each of the particles. A high-speed imaging technique is utilized to understand the effect of impact energy (and milling intensity) on the phase transformation during milling. In a further development, etching of the two-phase nanocomposites leads to the dissolution of the amorphous phase yielding free nanoparticle of ~ 2 nm size that exhibit UV range photoluminescence with potential for sensors and other optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Wilcoxon JP, Samara GA, Provencio PN (1999) Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys Rev B 60:2704–2714

    CAS  Google Scholar 

  2. Naoto S, Tsuyoshi H, Yoshio S, Tohru T (2010) Size-tunable UV-luminescent silicon nanocrystals. Small 6:915–921

    Google Scholar 

  3. Cullis AG, Canham LT (1991) Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353:335–338

    CAS  Google Scholar 

  4. Wang HY, He Y (2017) Recent advances in silicon nanomaterial-based fluorescent sensors. Sensors 17:268

    Google Scholar 

  5. Gonzalez CM, Iqbal M, Dasog M et al (2014) Detection of high-energy compounds using photoluminescent silicon nanocrystal paper based sensors. Nanoscale 6:2608–2612

    CAS  Google Scholar 

  6. Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F (2000) Optical gain in silicon nanocrystals. Nature 408:440–444

    CAS  Google Scholar 

  7. Elangovan H, Kesavan AV, Chattopadhyay K, Ramamurthy PC (2019) 2D layering of silicon nanocrystals at TiO2/CuI heterojunction for enhanced charge transport. J Appl Phys 125:245302

    Google Scholar 

  8. Ji XY, Wang HY, Song B, Chu BB, He Y (2018) Silicon nanomaterials for biosensing and bioimaging analysis. Front Chem 6:1–9

    Google Scholar 

  9. Hemaprabha E, Pandey UK, Chattopadhyay K, Ramamurthy PC (2018) Doped silicon nanoparticles for enhanced charge transportation in organic-inorganic hybrid solar cells. Sol Energy 173:744–751

    CAS  Google Scholar 

  10. Furasova A, Calabro E, Lamanna E et al (2018) Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells. Adv Opt Mater 6:1800576

    Google Scholar 

  11. Wu BZ, Wu FZ, Jin HX, Lu JT, Chen JB (2018) Review on silicon-based anode materials for lithium-ion battery. Rare Metal Mater Eng 47:2600–2606

    Google Scholar 

  12. Cho WC, Kim HJ, Lee HI et al (2016) 5L-scale magnesio-milling reduction of nanostructured SiO2 for high capacity silicon anodes in lithium-ion batteries. Nano Lett 16:7261–7269

    CAS  Google Scholar 

  13. Erk C, Brezesinski T, Sommer H, Schneider R, Janek J (2013) Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders. ACS Appl Mater Interfaces 5:7299–7307

    CAS  Google Scholar 

  14. Jaroniec M (2009) Silicon beyond the valley. Nat Chem 1:166

    CAS  Google Scholar 

  15. Ye WN, Xiong YL (2013) Review of silicon photonics: history and recent advances. J Mod Opt 60:1299–1320

    CAS  Google Scholar 

  16. Norman JC, Jung D, Zhang ZY et al (2019) A review of high-performance quantum dot lasers on silicon. IEEE J Quantum Electron 55:2000511

    CAS  Google Scholar 

  17. Tyagi VV, Rahim NAA, Rahim NA, Selvaraj JAL (2013) Progress in solar PV technology: research and achievement. Renew Sustain Energy Rev 20:443–461

    CAS  Google Scholar 

  18. Canham L (2000) Gaining light from silicon. Nature 408:411–412

    CAS  Google Scholar 

  19. Spomer N, Holl S, Zherlitsyna L, Maysamy F, Frost A, Auner N (2015) Amorphous silicon: new insights into an old material. Chem Eur J 21:5600–5616

    CAS  Google Scholar 

  20. Proot JP, Delerue C, Allan G (1992) Electronic-structure and optical-properties of silicon crystallites—application to porous silicon. Appl Phys Lett 61:1948–1950

    CAS  Google Scholar 

  21. Hapala P, Kusova K, Pelant I, Jelinek P (2013) Theoretical analysis of electronic band structure of 2- to 3-nm Si nanocrystals. Phys Rev B 87:195420

    Google Scholar 

  22. Dasog M, Yang ZY, Regli S et al (2013) Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano 7:2676–2685

    CAS  Google Scholar 

  23. Batu G, Naoto S (2014) Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range. Sci Technol Adv Mater 15:014207

    Google Scholar 

  24. Kuzmin PG, Shafeev GA, Bukin VV et al (2010) Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties. J Phys Chem C 114:15266–15273

    CAS  Google Scholar 

  25. Abderrafi K, García Calzada R, Gongalsky MB et al (2011) Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid. J Phys Chem C 115:5147–5151

    CAS  Google Scholar 

  26. Intartaglia R, Bagga K, Scotto M, Diaspro A, Brandi F (2012) Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Opt Mater Express 2:510–518

    CAS  Google Scholar 

  27. Werwa E, Seraphin AA, Chiu LA, Zhou C, Kolenbrander KD (1994) Synthesis and processing of silicon nanocrystallites using a pulsed laser ablation supersonic expansion method. Appl Phys Lett 64:1821–1823

    CAS  Google Scholar 

  28. Yoshida T, Takeyama S, Yamada Y, Mutoh K (1996) Nanometer-sized silicon crystallites prepared by excimer laser ablation in constant pressure inert gas. Appl Phys Lett 68:1772–1774

    CAS  Google Scholar 

  29. Gupta A, Swihart MT, Wiggers H (2009) Luminescent colloidal dispersion of silicon quantum dots from microwave plasma synthesis: exploring the photoluminescence behavior across the visible spectrum. Adv Func Mater 19:696–703

    CAS  Google Scholar 

  30. So KS, Lee H, Kim TH, Choi S, Park DW (2014) Synthesis of silicon nanopowder from silane gas by RF thermal plasma. Phys Status Solidi A 211:310–315

    CAS  Google Scholar 

  31. Knipping J, Wiggers H, Rellinghaus B, Roth P, Konjhodzic D, Meier C (2004) Synthesis of high purity silicon nanoparticles in a low pressure microwave reactor. J Nanosci Nanotechnol 4:1039–1044

    CAS  Google Scholar 

  32. Heath JR (1992) A liquid-solution-phase synthesis of crystalline silicon. Science 258:1131–1133

    CAS  Google Scholar 

  33. Zou J, Sanelle P, Pettigrew KA, Kauzlarich SM (2006) Size and spectroscopy of silicon nanoparticles prepared via reduction of SiCl4. J Clust Sci 17:565–578

    CAS  Google Scholar 

  34. Baldwin RK, Pettigrew KA, Ratai E, Augustine MP, Kauzlarich SM (2002) Solution reduction synthesis of surface stabilized silicon nanoparticles. Chem Commun 1822–1823

  35. Bley RA, Kauzlarich SM (1996) A low-temperature solution phase route for the synthesis of silicon nanoclusters. J Am Chem Soc 118:12461–12462

    CAS  Google Scholar 

  36. Hessel CM, Henderson EJ, Veinot JGC (2006) Hydrogen silsesquioxane: a molecular precursor for nanocrystalline Si–SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem Mater 18:6139–6146

    CAS  Google Scholar 

  37. Lehmann V, Gosele U (1991) Porous silicon formation—a quantum wire effect. Appl Phys Lett 58:856–858

    CAS  Google Scholar 

  38. Gaffet E, Faudot F, Harmelin M (1992) Amorphization induced by ball—milling in some pure elements: Si, Ge. Ordering and disordering in alloys. Springer, Dordrecht

    Google Scholar 

  39. Gaffet E, Harmelin M (1990) Crystal amorphous phase-transition induced by ball-milling in silicon. J Less-Common Met 157:201–222

    CAS  Google Scholar 

  40. Gaffet E, Harmelin M (1990) Crystal to non equilibrium phase-transition induced by ball-milling in silicon and the immiscible Si(Sn, Zn) systems. J Phys-Paris 51:C4139–C4150

    Google Scholar 

  41. Gaffet E, Faudot F, Harmelin M (1991) Crystal-to-amorphous phase-transition induced by mechanical alloying in the Ge–Si system. Mater Sci Eng A-Struct Mater Proper Microstruct Process 149:85–94

    Google Scholar 

  42. Gaffett E, Harmelin M (1990) Experimental investigations of the crystal to amorphous phase-transition induced by ball-milling in Si and Si–Sn. Struct Appl Mech Alloying 257–264

  43. Gaffet E, Faudot F, Harmelin M (1992) Metastable phase-transition induced by ball-milling in the Ge–Si system. Mater Sci Forum 88:375–382

    Google Scholar 

  44. Barai K, Tiwary CS, Chattopadhyay PP, Chattopadhyay K (2012) Synthesis of free standing nanocrystalline Cu by ball milling at cryogenic temperature. Mater Sci Eng A 558:52–58

    CAS  Google Scholar 

  45. Nishizawa J, Sasaki T (2003) Lifetime control by Fe doping in n-type silicon. Mat Sci Semicon Proc 6:273–275

    CAS  Google Scholar 

  46. Geerligs LJ, Macdonald D (2004) Base doping and recombination activity of impurities in crystalline silicon solar cells. Prog Photovoltaics 12:309–316

    CAS  Google Scholar 

  47. Hayes M, Martel B, Alam GW et al (2019) Impurity gettering by boron- and phosphorus-doped polysilicon passivating contacts for high-efficiency multicrystalline silicon solar cells. Physica Status Solidi A-Appl Mater Sci 216:1900321

    Google Scholar 

  48. Shen TD, Koch CC, Mccormick TL, Nemanich RJ, Huang JY, Huang JG (1995) The structure and property characteristics of amorphous nanocrystalline silicon produced by ball-milling. J Mater Res 10:139–148

    CAS  Google Scholar 

  49. Gaisler SV, Semenova OI, Sharafutdinov RG, Kolesov BA (2004) Analysis of Raman spectra of amorphous-nanocrystalline silicon films. Phys Solid State 46:1528–1532

    CAS  Google Scholar 

  50. Cheng GX, Xia H, Chen KJ, Zhang W, Zhang XK (1990) Raman measurement of the grain-size for silicon crystallites. Physica Status Solidi A-Appl Res 118:K51–K54

    Google Scholar 

  51. Iyer GRS, Hobbie EK, Guruvenket S et al (2012) Solution-based synthesis of crystalline silicon from liquid silane through laser and chemical annealing. ACS Appl Mater Interfaces 4:2680–2685

    CAS  Google Scholar 

  52. Yermakov AY, Yurchikov YY, Barinov VA (1981) Magnetic-properties of amorphous powders prepared by the mechanical grinding of Y-Co alloys. Fiz Met Metalloved 52:2486–2493

    Google Scholar 

  53. Koch CC, Cavin OB, Mckamey CG, Scarbrough JO (1983) Preparation of amorphous Ni60Nb40 by mechanical alloying. Appl Phys Lett 43:1017–1019

    CAS  Google Scholar 

  54. Schultz L, Hellstern E, Thoma A (1987) Superconducting transition-temperature of mechanically alloyed amorphous NiZr. Europhys Lett 3:921–926

    CAS  Google Scholar 

  55. Gaffet E, Merk N, Martin G, Bigot J (1988) Ball milling amorphization mechanism of Ni–Zr alloys. J Less-Common Met 145:251–260

    CAS  Google Scholar 

  56. Thompson JR, Politis C (1987) Formation of amorphous Ti–Pd alloys by mechanical alloying methods. Europhys Lett 3:199–205

    CAS  Google Scholar 

  57. Dolgin BP, Vanek MA, Mcgory T, Ham DJ (1986) Mechanical alloying of Ni Co, and Fe with Ti—formation of an amorphous phase. J Non-Cryst Solids 87:281–289

    CAS  Google Scholar 

  58. Hikata A, Mckenna MJ, Elbaum C (1987) Ultrasonic study of mechanically alloyed Co40Sn60. Appl Phys Lett 50:478–479

    CAS  Google Scholar 

  59. Weeber AW, Bakker H, Deboer FR (1986) The preparation of amorphous Ni–Zr powder by grinding the crystalline alloy. Europhys Lett 2:445–448

    CAS  Google Scholar 

  60. Lee PY, Koch CC (1987) Formation of amorphous Ni–Zr alloys by mechanical alloying of mixtures of the intermetallic compounds Ni11Zr9 and NiZr2. Appl Phys Lett 50:1578–1580

    CAS  Google Scholar 

  61. Schwarz RB, Koch CC (1986) Formation of amorphous-alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics. Appl Phys Lett 49:146–148

    CAS  Google Scholar 

  62. Shukla S, Wu DT, Ramanarayan H, Srolovitz D, Ramanujan RV (2013) Nanocrystallization in driven amorphous materials. Acta Mater 61:3242–3248

    CAS  Google Scholar 

  63. Chen Y, Bibole M, Lehazif R, Martin G (1993) Ball-milling-induced amorphization in NixZry compounds—a parametric study. Phys Rev B 48:14–21

    CAS  Google Scholar 

  64. Li X, He Y, Swihart MT (2004) Surface functionalization of silicon nanoparticles produced by laser-driven pyrolysis of silane followed by HF−HNO3 etching. Langmuir 20:4720–4727

    CAS  Google Scholar 

  65. Hua F, Swihart MT, Ruckenstein E (2005) Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation. Langmuir 21:6054–6062

    CAS  Google Scholar 

  66. Bywalez R, Karacuban H, Nienhaus H, Schulz C, Wiggers H (2012) Stabilization of mid-sized silicon nanoparticles by functionalization with acrylic acid. Nanoscale Res Lett 7:76

    Google Scholar 

  67. Sato S, Swihart MT (2006) Propionic-acid-terminated silicon nanoparticles: synthesis and optical characterization. Chem Mater 18:4083–4088

    CAS  Google Scholar 

  68. Wilcoxon JP, Samara GA, Provencio PP (1999) Absorbance and photoluminesence of Si, Ge, and MoS2 nanoparticles studied by liquid chromatography. Adv Luminescent Mater Quantum Confine 99:225–239

    Google Scholar 

  69. Dasog M, De los Reyes GB, Titova LV, Hegmann FA, Veinot JGC (2014) Size vs. surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano 8:9636–9648

    CAS  Google Scholar 

  70. Reboredo FA, Galli G (2005) Theory of alkyl-terminated silicon quantum dots. J Phys Chem B 109:1072–1078

    CAS  Google Scholar 

  71. Godefroo S, Hayne M, Jivanescu M et al (2008) Classification and control of the origin of photoluminescence from Si nanocrystals. Nat Nanotechnol 3:174–178

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by part under the US– India Partnership to Advance Clean Energy-Research (PACE-R) for the Solar Energy Research Institute for India and the United States (SERIIUS), funded jointly by the U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program, under Subcontract DE-AC36-08GO28308 to the National Renewable Energy Laboratory, Golden, Colorado) and the Government of India, through the Department of Science and Technology under Subcontract IUSSTF/JCERDC-SERIIUS/2012 dated 22nd Nov. 2012. The facilities provided by AFMM center and CeNSE at Indian Institute of Science are gratefully acknowledged. Authors thank Dr. Khusboo Pandey, Dr. SK Karthick, Mr. Sakthi Kumar for their help in performing high-speed imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamanio Chattopadhyay.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1029 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elangovan, H., Sengupta, S., Narayanan, R. et al. Silicon nanoparticles with UV range photoluminescence synthesized through cryomilling induced phase transformation and etching. J Mater Sci 56, 1515–1526 (2021). https://doi.org/10.1007/s10853-020-05374-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05374-z

Navigation