Skip to main content
Log in

Investigation of water sorption, gas barrier and antimicrobial properties of polycaprolactone films contain modified graphene

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dispersion of filler in a polymer matrix has a great effect on the structural-property relationship of the formed composite. In this context, surface modification of reduced graphene oxide (RGO) by hyperbranched polyester (PES) has been performed to facilitate its incorporation in polycaprolactone (PCL) matrix by melt blending technique. The structure of the modified reduced graphene oxide (mRGO) was confirmed by Fourier transform infrared (FTIR), and its morphology was studied with transmission electron microscope (TEM). Three main formulations, PCL/RGO and PCL/mRGO containing the same graphene content compared with the neat PCL, were prepared under melt conditions. The morphology and contact angle measurements for the prepared films were demonstrated. The impact of incorporated RGO and mRGO on the thermal and mechanical properties of the PCL matrix was studied. The results emphasized no change in thermal stability of the polymer composites after incorporation of the fillers while the films exhibited an improvement in the strength, the stiffness and ductility. Investigation of water sorption kinetics showed decreasing in the diffusion coefficient for all films reinforced with the nanofillers. Moreover, gas and water permeability displayed improvement in the barrier properties. Antimicrobial activity investigations revealed that films reinforced with mRGO exhibited high bactericidal activity against gram-positive bacteria compared with the neat PCL and those containing RGO. Moreover, incorporation of the prepared nanofillers showed a significant enhancement of the biodegradability of PCL polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cameron RE, Kamvari-Moghaddam A (2008) Synthetic bioresorbable polymers. In: Degradation rate of bioresorbable materials. Woodhead Publishing, Cambridge, England, pp 43–66

  2. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346

    CAS  Google Scholar 

  3. Daniels AU, Chang MK, Andriano KP, Heller J (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1(1):57–78

    CAS  Google Scholar 

  4. Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL (2004) Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol 64(6):789–817

    CAS  Google Scholar 

  5. Labidi S, Azema N, Perrin D, Lopez-Cuesta JM (2010) Organo-modified montmorillonite/poly (ɛ-caprolactone) nanocomposites prepared by melt intercalation in a twin-screw extruder. Polym Degrad Stab 95(3):382–388

    CAS  Google Scholar 

  6. Cesur S, Köroğlu C, Yalçın HT (2018) Antimicrobial and biodegradable food packaging applications of polycaprolactone/organo nanoclay/chitosan polymeric composite films. J Vinyl Add Tech 24(4):376–387

    CAS  Google Scholar 

  7. Mofokeng JP, Luyt AS (2015) Morphology and thermal degradation studies of melt-mixed poly(hydroxybutyrate-co-valerate) (PHBV)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. J Mater Sci 50:3812–3824. https://doi.org/10.1002/app.42138

    Article  CAS  Google Scholar 

  8. Myllymäki O, Myllärinen P, Forssell P, Suortti T, Lähteenkorva K, Ahvenainen R, Poutanen K (1998) Mechanical and permeability properties of biodegradable extruded starch/polycaprolactone films. Packag Technol Sci Int J 11(6):265–274

    Google Scholar 

  9. Lyu JS, Lee JS, Han J (2019) Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Sci Rep 9(1):1–11

    CAS  Google Scholar 

  10. Rešček A, Kratofil Krehula L, Katančić Z, Hrnjak-Murgić Z (2015) Active bilayer PE/PCL films for food packaging modified with zinc oxide and casein. Croat Chem Acta 88(4):461–473

    Google Scholar 

  11. Khalid S, Yu L, Feng M, Meng L, Bai Y, Ali A, Liu H, Chen L (2018) Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packag Shelf Life 18:71–79

    Google Scholar 

  12. Evlashin S, Dyakonov P, Tarkhov M, Dagesyan S, Rodionov S, Shpichka A, Kostenko M, Konev S, Sergeichev I, Timashev P, Akhatov I (2019) Flexible polycaprolactone and polycaprolactone/graphene scaffolds for tissue engineering. Materials 12(18):2991

    CAS  Google Scholar 

  13. Sayyar S, Murray E, Thompson BC, Gambhir S, Officer DL, Wallace GG (2013) Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon 52:296–304

    CAS  Google Scholar 

  14. Lee XJ, Hiew BYZ, Lai KC, Lee LY, Gan S, Thangalazhy-Gopakumar S, Rigby S (2019) Review on graphene and its derivatives: synthesis methods and potential industrial implementation. J Taiwan Inst Chem Eng 98:163–180

    CAS  Google Scholar 

  15. Mazlan M, Omar MNB, Shaiful AIM, Hussain S, Roslan MFM, Shaidan MNH, Rizman ZI (2018) A review of graphene based material: present and future application on electronic packaging. J Fundam Appl Sci 10(2S):803–820

    CAS  Google Scholar 

  16. Sundramoorthy AK, Kumar THV, Gunasekaran S (2018) Graphene-based nanosensors and smart food packaging systems for food safety and quality monitoring. In: Graphene bioelectronics. Elsevier, Amsterdam, Netherlands, pp 267–306

  17. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053

    CAS  Google Scholar 

  18. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530

    CAS  Google Scholar 

  19. Ghanem AF, Youssef AM, Abdel Rehim MH (2020) Hydrophobically modified graphene oxide as a barrier and antibacterial agent for polystyrene packaging. J Mater Sci 55:4685–4700

    CAS  Google Scholar 

  20. Yan D, Gao C, Frey H (eds) (2011) Hyperbranched polymers: synthesis, properties, and applications, vol 8. Wiley, ON, Canada

  21. Mahapatra SS, Ramasamy MS, Yoo HJ, Cho JW (2014) A reactive graphene sheet in situ functionalized hyperbranched polyurethane for high performance shape memory material. RSC Adv 4(29):15146–15153

    CAS  Google Scholar 

  22. Xu Q, Gong Y, Fang Y, Jiang G, Wang Y, Sun X, Wang R (2012) Straightforward synthesis of hyperbranched polymer/graphene nanocomposites from graphite oxide via in situ grafting from approach. Bull Mater Sci 35(5):795–800

    CAS  Google Scholar 

  23. Li H, Han L, Cooper-White JJ, Kim I (2012) A general and efficient method for decorating graphene sheets with metal nanoparticles based on the non-covalently functionalized graphene sheets with hyperbranched polymers. Nanoscale 4(4):1355–1361

    CAS  Google Scholar 

  24. Hu W, Yu B, Jiang SD, Song L, Hu Y, Wang B (2015) Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene. J Hazard Mater 300:58–66

    CAS  Google Scholar 

  25. Yu Y, De Andrade LCX, Fang L, Ma J, Zhang W, Tang Y (2015) Graphene oxide and hyperbranched polymer-toughened hydrogels with improved absorption properties and durability. J Mater Sci 50(9):3457–3466. https://doi.org/10.1007/s10853-015-8905-4

    Article  CAS  Google Scholar 

  26. Luan YG, Zhang XA, Jiang SL, Chen JH, Lyu YF (2018) Self-healing supramolecular polymer composites by hydrogen bonding interactions between hyperbranched polymer and graphene oxide. Chin J Polym Sci 36(5):584–591

    CAS  Google Scholar 

  27. Wu C, Huang X, Wang G, Wu X, Yang K, Li S, Jiang P (2012) Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. J Mater Chem 22(14):7010–7019

    CAS  Google Scholar 

  28. Ghanem AF, Badawy AA, Ismail N, Tian ZR, Rehim MA, Rabia A (2014) Photocatalytic activity of hyperbranched polyester/TiO2 nanocomposites. Appl Catal A 472:191–197

    CAS  Google Scholar 

  29. Ghanem AF, Badawy AA, Mohram ME, Abdelrehim MH (2019) Enhancement the photocatalytic and biological activity of nano-sized ZnO using hyperbranched polyester. J Inorg Organomet Polym Mater 29(3):928–938

    CAS  Google Scholar 

  30. Hassan HM, Abdelsayed V, Abd El Rahman SK, AbouZeid KM, Terner J, El-Shall MS et al (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19(23):3832–3837

    CAS  Google Scholar 

  31. Ghanem AF, Badawy AA, Mohram ME, Rehim MHA (2020) Synergistic effect of zinc oxide nanorods on the photocatalytic performance and the biological activity of graphene nano sheets. Heliyon 6(2):e03283

    Google Scholar 

  32. Pitt CG, Chasalow FI, Hibionada YM, Klimas DM, Schindler A (1981) Aliphatic polyesters. I. The degradation of poly (ϵ‐caprolactone) in vivo. J Appl Polym Sci 26(11):3779–3787

    CAS  Google Scholar 

  33. Ludueña LN, Kenny JM, Vázquez A, Alvarez VA (2011) Effect of clay organic modifier on the final performance of PCL/clay nanocomposites. Mater Sci Eng, A 529:215–223

    Google Scholar 

  34. Antipova TV, Zhelifonova VP, Zaitsev KV, Nedorezova PM, Aladyshev AM, Klyamkina AN, Kostyuk SV, Danilogorskaya AA, Kozlovsky AG (2018) Biodegradation of Poly-ε-caprolactones and Poly-l-lactides by Fungi. J Polym Environ 26(12):4350–4359

    CAS  Google Scholar 

  35. Deka MJ, Chowdhury D (2016) Tuning electrical properties of Graphene with different π-stacking organic molecules. J Phys Chem C 120(7):4121–4129

    CAS  Google Scholar 

  36. Kumar S, Azam D, Raj S, Kolanthai E, Vasu KS, Sood AK, Chatterjee K (2016) 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications. J Biomed Mater Res B Appl Biomater 104(4):732–749

    CAS  Google Scholar 

  37. Ludueña L, Vázquez A, Alvarez V (2012) Viscoelastic behavior of polycaprolactone/clay nanocomposites. J Compos Mater 46(6):677–689

    Google Scholar 

  38. Yahiaoui F, Benhacine F, Ferfera-Harrar H, Habi A, Hadj-Hamou AS, Grohens Y (2015) Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polym Bull 72(2):235–254

    CAS  Google Scholar 

  39. Shieh YT, Yang HS (2005) Morphological changes of polycaprolactone with high-pressure CO2 treatment. J Supercrit Fluids 33(2):183–192

    CAS  Google Scholar 

  40. Ludueña LN, Kenny JM, Vázquez A, Alvarez VA (2014) Effect of extrusion conditions and post-extrusion techniques on the morphology and thermal/mechanical properties of polycaprolactone/clay nanocomposites. J Compos Mater 48(17):2059–2070

    Google Scholar 

  41. Hadj-Hamou AS, Metref F, Yahiaoui F (2017) Thermal stability and decomposition kinetic studies of antimicrobial PCL/nanoclay packaging films. Polym Bull 74(9):3833–3853

    CAS  Google Scholar 

  42. Wan C, Chen B (2012) Reinforcement and interphase of polymer/graphene oxide nanocomposites. J Mater Chem 22(8):3637–3646

    CAS  Google Scholar 

  43. Brunauer S, Emmett PH (1937) The use of low temperature van der Waals adsorption isotherms in determining the surface areas of various adsorbents. J Am Chem Soc 59(12):2682–2689

    CAS  Google Scholar 

  44. Blanchard A, Gouanvé F, Espuche E (2017) Effect of humidity on mechanical, thermal and barrier properties of EVOH films. J Membr Sci 540:1–9

    CAS  Google Scholar 

  45. Cheviron P, Gouanvé F, Espuche E (2016) Preparation, characterization and barrier properties of silver/montmorillonite/starch nanocomposite films. J Membr Sci 497:162–171

    CAS  Google Scholar 

  46. Gain O, Espuche E, Pollet E, Alexandre M, Dubois P (2005) Gas barrier properties of poly(epsilon-caprolactone)/clay nanocomposites: influence of the morphology and polymer/clay interactions. J Polym Sci Part B Polym Phys 43:205–214

    CAS  Google Scholar 

  47. Gorrasi G, Tortora M, Vittoria V, Pollet E, Lepoittevin B, Alexandre M, Dubois P (2003) Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion. Polymer 44(8):2271–2279

    CAS  Google Scholar 

  48. Rouse PE Jr (1947) Diffusion of vapors in films. J Am Chem Soc 69(5):1068–1073

    CAS  Google Scholar 

  49. Gouanvé F, Marais S, Bessadok A, Langevin D, Métayer M (2007) Kinetics of water sorption in flax and PET fibers. Eur Polymer J 43(2):586–598

    Google Scholar 

  50. Follain N, Belbekhouche S, Bras J, Siqueira G, Chappey C, Marais S, Dufresne A (2018) Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network. Colloids Surf, A 545:26–30

    CAS  Google Scholar 

  51. Bouakaz BS, Pillin I, Habi A, Grohens Y (2015) Synergy between fillers in organomontmorillonite/graphene–PLA nanocomposites. Appl Clay Sci 116:69–77

    Google Scholar 

  52. Tunc S, Angellier H, Cahyana Y, Chalier P, Gontard N, Gastaldi E (2007) Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. J Membr Sci 289(1–2):159–168

    CAS  Google Scholar 

  53. Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci Chem 1(5):929–942

    CAS  Google Scholar 

  54. Yang C, Smyrl WH, Cussler EL (2004) Flake alignment in composite coatings. J Membr Sci 231(1–2):1–12

    CAS  Google Scholar 

  55. Lape NK, Nuxoll EE, Cussler EL (2004) Polydisperse flakes in barrier films. J Membr Sci 236(1–2):29–37

    CAS  Google Scholar 

  56. Moggridge GD, Lape NK, Yang C, Cussler EL (2003) Barrier films using flakes and reactive additives. Prog Org Coat 46(4):231–240

    CAS  Google Scholar 

  57. Kim HM, Lee HS (2014) Water and oxygen permeation through transparent ethylene vinyl alcohol/(graphene oxide) membranes. Carbon Lett 15(1):50–56

    Google Scholar 

  58. Compton OC, Kim S, Pierre C, Torkelson JM, Nguyen ST (2010) Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv Mater 22(42):4759–4763

    CAS  Google Scholar 

  59. Liao C, Li Y, Tjong SC (2019) Antibacterial activities of aliphatic polyester nanocomposites with silver nanoparticles and/or graphene oxide sheets. Nanomaterials 9(8):1102

    CAS  Google Scholar 

  60. Zou X, Zhang L, Wang Z, Luo Y (2016) Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc 138(7):2064–2077

    CAS  Google Scholar 

  61. Angulo-Pineda C, Srirussamee K, Palma P, Fuenzalida VM, Cartmell SH, Palza H (2020) Electroactive 3D printed scaffolds based on percolated composites of polycaprolactone with thermally reduced graphene oxide for antibacterial and tissue engineering applications. Nanomaterials 10(3):428

    CAS  Google Scholar 

  62. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736

    CAS  Google Scholar 

  63. Heimowska A, Morawska M, Bocho-Janiszewska A (2017) Biodegradation of poly (ε-caprolactone) in natural water environments. Pol J Chem Technol 19(1):120–126

    CAS  Google Scholar 

  64. Martín C, Kostarelos K, Prato M, Bianco A (2019) Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chem Commun 55(39):5540–5546

    Google Scholar 

  65. Lalwani G, Xing W, Sitharaman B (2014) Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase. J Mater Chem B 2(37):6354–6362

    CAS  Google Scholar 

  66. Sánchez-González S, Diban N, Urtiaga A (2018) Hydrolytic degradation and mechanical stability of poly (ε-Caprolactone)/reduced graphene oxide membranes as scaffolds for in vitro neural tissue regeneration. Membranes 8(1):12

    Google Scholar 

Download references

Acknowledgements

The financial support of this work by the Academy of Scientific Research and Technology (ASRT)- Imhotep program is deeply acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona H. Abdel Rehim.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanem, A.F., Yassin, M.A., Rabie, A.M. et al. Investigation of water sorption, gas barrier and antimicrobial properties of polycaprolactone films contain modified graphene. J Mater Sci 56, 497–512 (2021). https://doi.org/10.1007/s10853-020-05329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05329-4

Navigation