Skip to main content
Log in

Anti-corrosion reinforcement of waterborne polyurethane coating with polymerized graphene oxide by the one-pot method

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The research and preparation of excellent anti-corrosion coatings is still a difficult task and critical to practical applications. In this paper, phosphoric acid, dodecylbenzenesulfonic acid (DBSA), and polyaniline (PANI) were polymerized in-situ onto graphene oxide (GO) by the one-pot method to prepare dodecylbenzenesulfonic acid-PANI/phosphorylated graphene oxide (DPPGO). The results of TEM, FTIR, Raman spectrum, XRD, TGA, and XPS analysis showed that the DPPGO was successfully prepared. The SEM observations showed that DPPGO has best dispersibility and compatibility than GO and PANI/phosphorylated graphene oxide (PPGO) in waterborne polyurethane (WPU) matrix. To achieve anti-corrosion performance, a new type of graphene-based polymer nanocomposites water-based coating was developed and tested by electrochemical measurements. Through a series of electrochemical tests, it is concluded that the anti-corrosion performance of a composite coating DPPGO is significantly improved. The excellent anti-corrosion properties are due to the perfect dispersion and good compatibility of DPPGO in WPU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Ding Y, Zhong J, Xie P et al (2019) Polymers 11:13. https://doi.org/10.3390/polym11121998

    Article  CAS  Google Scholar 

  2. Dutta D, Ganda ANF, Chih JK, Huang CC, Tseng CJ, Su CY (2018) Nanoscale 10:12612. https://doi.org/10.1039/c8nr03261k

    Article  CAS  Google Scholar 

  3. Gianni L, Gigante GE, Cavallini M, Adriaens A (2014) Materials 7:3353. https://doi.org/10.3390/ma7053353

    Article  CAS  Google Scholar 

  4. Singh BP, Jena BK, Bhattacharjee S, Besra L (2013) Surf Coat Technol 232:475. https://doi.org/10.1016/j.surfcoat.2013.06.004

    Article  CAS  Google Scholar 

  5. Mondal T, Ashkar R, Butler P, Bhowmick AK, Krishnamoorti R (2016) ACS Macro Lett 5:278. https://doi.org/10.1021/acsmacrolett.5b00930

    Article  CAS  Google Scholar 

  6. Xiong LL, Liu JH, Yu M, Li SM (2019) Corros Sci 146:70. https://doi.org/10.1016/j.corsci.2018.10.016

    Article  CAS  Google Scholar 

  7. Cui G, Bi ZX, Zhang RY, Liu JG, Yu X, Li ZL (2019) Chem Eng J 373:104. https://doi.org/10.1016/j.cej.2019.05.034

    Article  CAS  Google Scholar 

  8. Chen SS, Brown L, Levendorf M et al (2011) ACS Nano 5:1321. https://doi.org/10.1021/nn103028d

    Article  CAS  Google Scholar 

  9. Nikpour B, Ramezanzadeh B, Bahlakeh G, Mandavian M (2017) Corros Sci 127:240. https://doi.org/10.1016/j.corsci.2017.08.029

    Article  CAS  Google Scholar 

  10. Othman NH, Ismail MC, Mustapha M, Sallih N, Kee KE, Jaal RA (2019) Prog Org Coat 135:82. https://doi.org/10.1016/j.porgcoat.2019.05.030

    Article  CAS  Google Scholar 

  11. Sung SJ, Park J, Cho YS, Gihm SH, Yang SJ, Park CR (2019) Carbon 150:275. https://doi.org/10.1016/j.carbon.2019.04.120

    Article  CAS  Google Scholar 

  12. Wang K, Li LW, Zhang TZ, Liu ZF (2014) Energy 70:612. https://doi.org/10.1016/j.energy.2014.04.034

    Article  CAS  Google Scholar 

  13. Zheng ZX, Feng QL, Zhu MJ et al (2019) Anal Chim Acta 1072:46. https://doi.org/10.1016/j.aca.2019.04.040

    Article  CAS  Google Scholar 

  14. Da SX, Wang J, Geng HZ et al (2017) Appl Surf Sci 392:1117. https://doi.org/10.1016/j.apsusc.2016.09.143

    Article  CAS  Google Scholar 

  15. Geng HZ, Kim KK, So KP, Lee YS, Chang Y, Lee YH (2007) J Am Chem Soc 129:7758. https://doi.org/10.1021/ja0722224

    Article  CAS  Google Scholar 

  16. Gu ZZ, Jia SL, Li GF, Li CQ, Wu YQ, Geng HZ (2019) RSC Adv 9:3162. https://doi.org/10.1039/c8ra09443h

    Article  CAS  Google Scholar 

  17. Wang T, Jing LC, Zhu QX et al (2020) Appl Surf Sci 500:10. https://doi.org/10.1016/j.apsusc.2019.143997

    Article  CAS  Google Scholar 

  18. Wang J, Geng H-Z, Luo Z-J et al (2015) RSC Adv 5:105393. https://doi.org/10.1039/c5ra19166a

    Article  CAS  Google Scholar 

  19. Hsieh YP, Hofmann M, Chang KW et al (2014) ACS Nano 8:443. https://doi.org/10.1021/nn404756q

    Article  CAS  Google Scholar 

  20. Zhong F, He Y, Wang PQ et al (2019) Appl Surf Sci 488:801. https://doi.org/10.1016/j.apsusc.2019.05.321

    Article  CAS  Google Scholar 

  21. Li JY, Li XR, Zhu K, Wang HH, Fei GQ (2018) Journal Of Macromolecular Science Part a-Pure And Applied. Chemistry 55:649. https://doi.org/10.1080/10601325.2018.1504611

    Article  CAS  Google Scholar 

  22. Sankarasubramanian S, Singh N, Mizuno F, Prakash J (2016) J Power Sources 319:202. https://doi.org/10.1016/j.jpowsour.2016.04.054

    Article  CAS  Google Scholar 

  23. Zhang H, Tao Z, Tang Y, Yang M, Wang G (2016) New J Chem 40:8587. https://doi.org/10.1039/c6nj02408d

    Article  CAS  Google Scholar 

  24. Ramezanzadeh B, Haeri Z, Ramezanzadeh M (2016) Chem Eng J 303:511. https://doi.org/10.1016/j.cej.2016.06.028

    Article  CAS  Google Scholar 

  25. Li YY, Xu YT, Wang SC, Wang HC, Li M, Dai LZ (2019) High Perform Polym 31:1226. https://doi.org/10.1177/0954008319839442

    Article  CAS  Google Scholar 

  26. Ramezanzadeh B, Bahlakeh G, Ramezanzadeh M (2018) Corros Sci 137:111. https://doi.org/10.1016/j.corsci.2018.03.038

    Article  CAS  Google Scholar 

  27. Chang CH, Huang TC, Peng CW et al (2012) Carbon 50:5044. https://doi.org/10.1016/j.carbon.2012.06.043

    Article  CAS  Google Scholar 

  28. Hayatgheib Y, Ramezanzadeh B, Kardar P, Mandavian M (2018) Corros Sci 133:358. https://doi.org/10.1016/j.corsci.2018.01.046

    Article  CAS  Google Scholar 

  29. Kang JH, Kim T, Choi J et al (2016) Chem Mater 28:756. https://doi.org/10.1021/acs.chemmater.5b03700

    Article  CAS  Google Scholar 

  30. Feng JY, Wang XC, Guo PY, Wang YJ, Luo XM (2018) Polymers 10:12. https://doi.org/10.3390/polym10010075

    Article  CAS  Google Scholar 

  31. Nakagawa A, Tanaka M, Hanamura S, Takahashi D, Toshima K (2015) Angew Chem Int Ed 54:10935

    Article  CAS  Google Scholar 

  32. Pathak AK, Kumar V, Sharma S, Yokozeki T, Dhakate SR (2019) J Colloid Interface Sci 533:548. https://doi.org/10.1016/j.jcis.2018.08.105

    Article  CAS  Google Scholar 

  33. Ciric-Marjanovic G (2013) Synth Met 177:1. https://doi.org/10.1016/j.synthmet.2013.06.004

    Article  CAS  Google Scholar 

  34. Dermani AK, Kowsari E, Ramezanzadeh B, Amini R (2018) Prog Org Coat 122:255. https://doi.org/10.1016/j.porgcoat.2018.06.003

    Article  CAS  Google Scholar 

  35. Wu H, Sun H, Hong W, et al (2017) Acs Appl Mater Interfaces. https://doi.org/10.1021/acsami.7b09680

    Article  Google Scholar 

  36. Tsai TH, Yeh PC, Chen SM, Ali MA, Al-Hemaid FMA (2014) Electroanalysis 26:971

    Article  CAS  Google Scholar 

  37. Song PG, Cao ZH, Cai YZ, Zhao LP, Fang ZP, Fu SY (2011) Polymer 52:4001. https://doi.org/10.1016/j.polymer.2011.06.045

    Article  CAS  Google Scholar 

  38. Ramezanzadeh B, Ghasemi E, Mahdavian M, Changizi E, Moghadam MHM (2015) Carbon 93:555. https://doi.org/10.1016/j.carbon.2015.05.094

    Article  CAS  Google Scholar 

  39. Aneja KS, Bohm S, Khanna AS, Bohm HLM (2015) Nanoscale 7:17879. https://doi.org/10.1039/c5nr04702a

    Article  CAS  Google Scholar 

  40. Wessling B, Posdorfer J (1999) Electrochim Acta 44:2139. https://doi.org/10.1016/s0013-4686(98)00322-3

    Article  CAS  Google Scholar 

  41. Liu S, Gu L, Zhao HC, Chen JM, Yu HB (2016) J Mater Sci Technol 32:425. https://doi.org/10.1016/j.jmst.2015.12.017

    Article  CAS  Google Scholar 

  42. Wen JG, Geng WM, Geng HZ et al (2019) Acs Omega 4:20265. https://doi.org/10.1021/acsomega.9b02687

    Article  CAS  Google Scholar 

  43. Ejenstam L, Swerin A, Pan JS, Claesson PM (2015) Corros Sci 99:89. https://doi.org/10.1016/j.corsci.2015.06.018

    Article  CAS  Google Scholar 

  44. Jing L-C, Wang T, Cao W-W et al (2020) Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2020.105734

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Natural Science Foundation of Tianjin China (Grant No. 19JCZDJC37800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Wei Cao or Hong-Zhang Geng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, YJ., Zhu, ZR., Cao, WW. et al. Anti-corrosion reinforcement of waterborne polyurethane coating with polymerized graphene oxide by the one-pot method. J Mater Sci 56, 337–350 (2021). https://doi.org/10.1007/s10853-020-05243-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05243-9

Navigation