Skip to main content
Log in

Microstructural development in DED stainless steels: applying welding models to elucidate the impact of processing and alloy composition

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Austenitic stainless steel microstructures produced by directed energy deposition (DED) are analogous to those developed during welding, particularly high energy density welding. To better understand microstructural development during DED, theories of microstructural evolution, which have been established to contextualize weld microstructures, are applied in this study to microstructural development in DED austenitic stainless steels. Phenomenological welding models that describe the development of oxide inclusions, compositional microsegregation, ferrite, matrix austenite grains, and dislocation substructures are utilized to clarify microstructural evolution during deposition of austenitic stainless steels. Two different alloys, 304L and 316L, are compared to demonstrate the broad applicability of this framework for understanding microstructural development during the DED process. Despite differences in grain morphology and solidification mode for these two alloys (which can be attributed to compositional differences), similar tensile properties are achieved. It is the fine-scale compositional segregation and dislocation structures that ultimately determine the strength of these materials. The evolution of microsegregation and dislocation structures is shown to be dependent on the rapid solidification and thermomechanical history of the DED processing method and not the composition of the starting material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Griffith ML, Ensz MT, Puskar JD, Robino CV, Brooks JA, Philliber JA, Smugeresky JE, Hofmeister WH (2000) Understanding the microstructure and properties of components fabricated by laser engineered net shaping (LENS). MRS Proc 625:9–20

    CAS  Google Scholar 

  2. Zheng B, Zhou Y, Smugeresky JE, Schoenung JM, Lavernia EJ (2008) Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: part II. Experimental investigation and discussion. Metall Mater Trans A 39A(9):2237–2245

    CAS  Google Scholar 

  3. Ma M, Wang Z, Wang D, Zeng X (2013) Control of shape and performance for direct laser fabrication of precision large-scale metal parts with 316L stainless steel. Opt Laser Technol 45:209–216

    CAS  Google Scholar 

  4. Yu J, Rombouts M, Maes G (2013) Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition. Mater Design 45:228–235

    CAS  Google Scholar 

  5. Zhang K, Wang S, Liu W, Shang X (2014) Characterization of stainless steel parts by laser metal deposition shaping. Mater Design 55:104–119

    CAS  Google Scholar 

  6. Smugeresky JE, Harris MF, Griffith ML, Gill DD, Robino CV (2004) On the interface between LENS deposited stainless steel 304L repair geometry and cast or machined components, SAND2004-4035

  7. Xue Y, Pascu A, Horstemeyer MF, Wang L, Wang PT (2010) Microporosity effects on cyclic plasticity and fatigue of LENS™-processed steel. Acta Mater 58(11):4029–4038

    CAS  Google Scholar 

  8. Yadollahi A, Shamsaei N, Thompson SM, Seely D (2015) Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng A 644:171–183

    CAS  Google Scholar 

  9. Wang Z, Palmer TA, Beese AM (2016) Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater 110:226–235

    CAS  Google Scholar 

  10. Marya M, Singh V, Marya S, Hascoet JY (2015) Microstructural development and technical challenges in laser additive manufacturing: case study with a 316L industrial part. Metall Mater Trans B 46(4):1654–1665

    CAS  Google Scholar 

  11. de Lima MSF, Sankaré S (2014) Microstructure and mechanical behavior of laser additive manufactured AISI 316 stainless steel stringers. Mater. Design 55:526–532

    Google Scholar 

  12. Hofmeister W, Griffith M, Ensz M, Smugeresky J (2001) Solidification in direct metal deposition by LENS processing. JOM 53(9):30–34

    CAS  Google Scholar 

  13. Brooks JA, Headley TJ, Robino CV (2000) Microstructures of laser deposited 304L austenitic stainless steel. MRS Proc 625:21–30

    CAS  Google Scholar 

  14. Yang N, Yee J, Zheng B, Gaiser K, Reynolds T, Clemon L, Lu WY, Schoenung JM, Lavernia EJ (2016) Process-structure-property relationships for 316L stainless steel fabricated by additive manufacturing and its implication for component engineering. J Therm Spray Technol 26:1–17

    Google Scholar 

  15. Ziętala M, Durejko T, Polański M, Kunce I, Płociński T, Zieliński W, Łazińska M, Stępniowski W, Czujko T, Kurzydłowski KJ, Bojar Z (2016) The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping. Mater Sci Eng, A 677:1–10

    Google Scholar 

  16. Smith TR, Sugar JD, Schoenung JM, SanMarchi C (2018) Anomalous annealing response of directed energy deposited type 304L austenitic stainless steel. JOM 70(3):358–363

    CAS  Google Scholar 

  17. Headley TJ, Brooks JA (2002) A new Bcc-Fcc orientation relationship observed between ferrite and austenite in solidification structures of steels. Metall Mater Trans A 33(1):5–15

    Google Scholar 

  18. Brown DW, Adams DP, Balogh L, Carpenter JS, Clausen B, King G, Reedlunn B, Palmer TA, Maguire MC, Vogel SC (2017) In situ neutron diffraction study of the influence of microstructure on the mechanical response of additively manufactured 304L stainless steel. Metall Mater Trans A 48(12):6055–6069

    CAS  Google Scholar 

  19. Lippold JC, Kotecki DJ (2005) Welding metallurgy and weldability of stainless steels. Wiley, Hoboken

    Google Scholar 

  20. Easterling K (2003) Introduction to the physical metallurgy of welding. Elsevier, Amsterdam

    Google Scholar 

  21. David SA, Vitek JM (1989) Correlation between solidification parameters and weld microstructures. Int Mater Rev 34(1):213–245

    CAS  Google Scholar 

  22. Lippold J (1994) Solidification behavior and cracking susceptibility of pulsed-laser welds in austenitic stainless steels. Weld J 73(6):129–139

    Google Scholar 

  23. Brooks JA, Thompson AW (1991) Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. Int Mater Rev 36(1):16–44

    CAS  Google Scholar 

  24. Smith TR, Sugar JD, SanMarchi C, Schoenung JM (2019) Strengthening mechanisms in directed energy deposited austenitic stainless steel. Acta Mater. 164:728–740

    CAS  Google Scholar 

  25. Kotecki D, Siewert T (1992) WRC-1992 constitution diagram for stainless steel weld metals: a modification of the WRC-1988 diagram. Weld J 71(5):171–178

    Google Scholar 

  26. ASTM E8 (2015) ASTM International

  27. Liu S, Olson DL (1987) The influence of inclusion chemical composition on weld metal microstructure. J Mater Eng 9(3):237–251

    CAS  Google Scholar 

  28. ASTM E2627 (2013) ASTM International

  29. Goodwin SJ, Noble FW, Eyre BL (1989) Inclusion nucleated ductile fracture in stainless steel. Acta Metall Mater 37(5):1389–1398

    CAS  Google Scholar 

  30. Sun Z, Tan X, Tor SB, Yeong WY (2016) Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater Design 104:197–204

    CAS  Google Scholar 

  31. Saeidi K, Gao X, Zhong Y, Shen ZJ (2015) Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater Sci Eng A 625:221–229

    CAS  Google Scholar 

  32. Yadollahi A, Shamsaei N, Hammi Y, Horstemeyer MF (2016) Quantification of tensile damage evolution in additive manufactured austenitic stainless steels. Mater Sci Eng, A 657:399–405

    CAS  Google Scholar 

  33. Grong Ø, Kluken AO, Nylund HK, Dons AL, Hjelen J (1995) Catalyst effects in heterogeneous nucleation of acicular ferrite. Metall Mater Trans A 26(3):525–534

    Google Scholar 

  34. Hsieh KC, Babu SS, Vitek JM, David SA (1996) Calculation of inclusion formation in low-alloy-steel welds. Mater Sci Eng A 215(1):84–91

    Google Scholar 

  35. Hong T, Debroy T, Babu SS, David SA (2000) Modeling of inclusion growth and dissolution in the weld pool. Metall Mater Trans B 31(1):161–169

    Google Scholar 

  36. Babu S, Reidenbach F, David S, Böllinghaus T, Hoffmeister H (2013) Effect of high energy density welding processes on inclusion and microstructure formation in steel welds. Sci Technol Weld Join 4(2):63–73

    Google Scholar 

  37. Babu S, David S, Vitek J, Mundra K, DebRoy T (1995) Development of macro-and microstructures of Carbon-Manganese low alloy steel welds: inclusion formation. Mater Sci Technol 11(2):186–199

    CAS  Google Scholar 

  38. Lu S, Fujii H, Sugiyama H, Tanaka M, Nogi K (2003) Effects of oxygen additions to argon shielding gas on GTA weld shape. ISIJ Int 43(10):1590–1595

    CAS  Google Scholar 

  39. Lu S, Fujii H, Nogi K (2004) Sensitivity of Marangoni convection and weld shape variations to welding parameters in O2–Ar shielded GTA welding. Scr Mater 51(3):271–277

    CAS  Google Scholar 

  40. Zou Y, Ueji R, Fujii H (2014) Effect of oxygen on weld shape and crystallographic orientation of duplex stainless steel weld using advanced A-TIG (AA-TIG) welding method. Mater Charact 91:42–49

    CAS  Google Scholar 

  41. Syed AA, Denoirjean A, Fauchais P, Labbe JC (2006) On the oxidation of stainless steel particles in the plasma jet. Surf Coat Technol 200(14):4368–4382

    CAS  Google Scholar 

  42. Kluken AO, Grong Ø (1989) Mechanisms of inclusion formation in Al–Ti–Si–Mn deoxidized steel weld metals. Metall Trans A 20(8):1335–1349

    Google Scholar 

  43. Hofmeister W, Wert M, Smugeresky J, Philliber JA, Griffith M, Ensz M (1999) Investigating solidification with the laser-engineered net shaping (LENS™) process. JOM 51(7):1–6

    Google Scholar 

  44. Babu SS (2004) The mechanism of acicular ferrite in weld deposits. Curr Opin Solid State Mater Sci 8(3–4):267–278

    CAS  Google Scholar 

  45. Zheng B, Zhou Y, Smugeresky JE, Schoenung JM, Lavernia EJ (2008) Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: part I. Numerical calculations. Metall Mater Trans A 39A(9):2228–2236

    CAS  Google Scholar 

  46. Gorsse S, Hutchinson C, Gouné M, Banerjee R (2017) Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti–6Al–4V and high-entropy alloys. Sci Technol Adv Mater 18(1):584–610

    CAS  Google Scholar 

  47. Scipioni Bertoli U, Guss G, Wu S, Matthews MJ, Schoenung JM (2017) In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Mater Design 135:385–396

    CAS  Google Scholar 

  48. Scipioni Bertoli U, MacDonald BE, Schoenung JM (2019) Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel. Mater Sci Eng A 739:109–117

    CAS  Google Scholar 

  49. Elmer JW, Wong J, Ressler T (2000) In-situ observations of phase transformations during solidification and cooling of austenitic stainless steel welds using time-resolved x-ray diffraction. Scr Mater 43(8):751–757

    CAS  Google Scholar 

  50. Lippold JC, Clark WA, Tumuluru M (1992) An investigation of weld metal interfaces. In: The Metal Science of Joining. The Metals, Minerals and Materials Society, Warrendale, PA, pp. 141–146

  51. Elmer JW, Allen SM, Eagar TW (1989) Microstructural development during solidification of stainless steel alloys. Metall Trans A 20(10):2117–2131

    Google Scholar 

  52. Elmer JW (1988) The influence of cooling rate on the microstructure of stainless steel alloys. Lawrence Livermore National Laboratory, Livermore

    Google Scholar 

  53. Brooks JA, Williams JC, Thompson AW (1983) STEM analysis of primary austenite solidified stainless steel welds. Metall Trans A 14(1):23–31

    CAS  Google Scholar 

  54. Koseki T, Inoue H, Fukuda Y, Nogami A (2003) Numerical simulation of equiaxed grain formation in weld solidification. Sci Technol Adv Mater 4(2):183–195

    CAS  Google Scholar 

  55. Martin JH, Yahata BD, Hundley JM, Mayer JA, Schaedler TA, Pollock TM (2017) 3D printing of high-strength aluminium alloys. Nature 549(7672):365

    CAS  Google Scholar 

  56. Basak A, Das S (2016) Epitaxy and microstructure evolution in metal additive manufacturing. Annu. Rev. Mat. Res. 46(1):125–149

    CAS  Google Scholar 

  57. Dupont JN (2011) ASM handbook, pp 96–113

  58. Rappaz M, Vitek JM, David SA, Boatner LA (1993) Microstructural formation in longitudinal bicrystal welds. Metall Trans A 24(6):1433–1446

    Google Scholar 

  59. Rappaz M, David S, Vitek J, Boatner L (1990) Analysis of solidification microstructures in Fe–Ni–Cr single-crystal welds. Metall Trans A 21(6):1767–1782

    Google Scholar 

  60. Rappaz M, David S, Vitek J, Boatner L (1989) Development of microstructures in Fe−15Ni−15Cr single crystal electron beam welds. Metall Trans A 20(6):1125–1138

    Google Scholar 

  61. Van der Drift A (1967) Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res Rep 22(3):267–288

    Google Scholar 

  62. Terrassa KL, Smith TR, Jiang S, Sugar JD, Schoenung JM (2019) Improving build quality in directed energy deposition by cross-hatching. Mater Sci Eng, A 765:138269

    CAS  Google Scholar 

  63. King R, Stiegler J, Goodwin G (1974) Relation between mechanical properties and microstructure in CRE type 308 weldments. Weld J 53(7):307–313

    Google Scholar 

  64. Lindgren LE (2001) Finite element modeling and simulation of welding. Part 2: improved material modeling. J Therm Stress 24(3):195–231

    Google Scholar 

  65. Francis J, Bhadeshia H, Withers P (2007) Welding residual stresses in ferritic power plant steels. Mater Sci Technol 23(9):1009–1020

    CAS  Google Scholar 

  66. Mark AF, Francis JA, Dai H, Turski M, Hurrell PR, Bate SK, Kornmeier JR, Withers PJ (2012) On the evolution of local material properties and residual stress in a three-pass SA508 steel weld. Acta Mater 60(8):3268–3278

    CAS  Google Scholar 

  67. Smith MC, Nadri B, Smith AC, Carr DG, Bendeich PJ, Edwards LE (2009) Pressure vessels and piping conference (PVP 2009), ASME

  68. Turski M, Smith M, Bouchard P, Edwards L, Withers P (2009) Spatially resolved materials property data from a uniaxial cross-weld tensile test. J Press Vess Technol 131(6):061406

    Google Scholar 

  69. Murakawa H, Béreš M, Davies CM, Rashed S, Vega A, Tsunori M, Nikbin KM, Dye D (2010) Effect of low transformation temperature weld filler metal on welding residual stress. Sci Technol Weld Joining 15(5):393–399

    CAS  Google Scholar 

  70. Stender ME, Beghini LL, Sugar JD, Veilleux MG, Subia SR, Smith TR, San Marchi CW, Brown AA, Dagel DJ (2018) A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling. Additive Manufacturing. 21:556–566

    Google Scholar 

  71. Schino AD, Salvatori I, Kenny JM (2002) Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel. J Mater Sci 37(21):4561–4565. https://doi.org/10.1023/A:1020631912685

    Article  Google Scholar 

  72. Odnobokova M, Belyakov A, Kaibyshev R (2015) Development of nanocrystalline 304L stainless steel by large strain cold working. Metals 5(2):656–668

    CAS  Google Scholar 

  73. Kashyap BP, Tangri K (1995) On the Hall-Petch relationship and substructural evolution in type 316L stainless steel. Acta Metall Mater 43(11):3971–3981

    CAS  Google Scholar 

  74. Kashyap BP, Tangri K (1997) Hall–Petch relationship and substructural evolution in boron containing type 316L stainless steel. Acta Mater 45(6):2383–2395

    CAS  Google Scholar 

  75. Smith TR (2018) Directed energy deposited austenitic stainless steels: a metallurgical investigation. University of California, Davis

    Google Scholar 

Download references

Acknowledgements

T.R.S. gratefully acknowledges support from the UC Davis Campus Executive Fellowship from Sandia National Laboratories. W. York, A. Gardea, and S. Vitale are thanked for metallographic specimen preparation support. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thale R. Smith.

Additional information

Handling Editor: Sophie Primig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, T.R., Sugar, J.D., San Marchi, C. et al. Microstructural development in DED stainless steels: applying welding models to elucidate the impact of processing and alloy composition. J Mater Sci 56, 762–780 (2021). https://doi.org/10.1007/s10853-020-05232-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05232-y

Navigation