Skip to main content
Log in

Crystal structure, Hirshfeld surface analysis and thermal behavior of diisopropylammonium succinate, a novel third-order nonlinear optical crystal

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The current research presents a novel third-order nonlinear optical single crystal named diisopropylammonium succinate by slow evaporation solution growth technique. Single-crystal X-ray diffraction and nuclear magnetic resonance techniques are utilized to validate the synthesis and formation of the titled crystal. The grown crystal belongs to monoclinic crystal system with space group P21/n, and its lattice parameters are found to be a = 8.3660 Å, b = 11.4818 Å, c = 13.5239 Å and β = 98.3810°. 1H NMR and 13C NMR revealed the hydrogen bonds present within the molecules of crystal. The 3D visualization of intermolecular interactions was understood by the color contour of Hirshfeld surface of the grown crystal. UV–Vis and photoluminescence spectroscopic techniques are employed to understand the linear optical behavior of the reported crystal. The thermal stability of the material is facilitated by thermogravimetric analysis and differential thermal analysis. The titled crystal is found to be stable up to 140 °C. The third-order nonlinear optical behavior is determined using the z-scan technique.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Kwon OP, Jazbinsek M, Yun H et al (2008) Pyrrole-based hydrazone organic nonlinear optical crystals and their polymorphs. Cryst Growth Des 8:4021–4025. https://doi.org/10.1021/cg800218u

    Article  CAS  Google Scholar 

  2. Natarajan S, Britto SAM, Ramachandran E (2006) Growth, thermal, spectroscopic, and optical studies of l-alaninium maleate, a new organic nonlinear optical material. Cryst Growth Des 6:137–140. https://doi.org/10.1021/cg0502439

    Article  CAS  Google Scholar 

  3. Brahadeeswaran S, Takahashi Y, Yoshimura M et al (2013) Growth of ultrathin and highly efficient organic nonlinear optical crystal 4′-dimethylamino- n -methyl-4-stilbazolium p -chlorobenzenesulfonate for enhanced terahertz efficiency at higher frequencies. Cryst Growth Des 13:415–421. https://doi.org/10.1021/cg300606g

    Article  CAS  Google Scholar 

  4. Chemla DS, Zyss J (1987) Nonlinear optical properties of organic molecules and crystals vols. 1 and 2. Academic Press, New York

    Google Scholar 

  5. Boyd RW (1992) Nonlinear optics. Academic Press, San Diego

    Google Scholar 

  6. Pacebutas V, Stalnionis A, Krotkus A, et al (2001) Nonlinear optical characterization of single-crystalline GaN by Z-scan technique. In: Asmontas SP, Gradauskas J (eds) Vilnius, pp 135–139

  7. Ramteke SP, Baig MI, Shkir M et al (2018) Novel report on SHG efficiency, Z-scan, laser damage threshold, photoluminescence, dielectric and surface microscopic studies of hybrid inorganic ammonium zinc sulphate hydrate single crystal. Opt Laser Technol 104:83–89. https://doi.org/10.1016/j.optlastec.2018.02.018

    Article  CAS  Google Scholar 

  8. Vij M, Sonia Yadav H et al (2020) Crystal growth, structure and Z-scan studies of novel diisopropylammonium nicotinate crystal. J Mol Struct 1206:127759. https://doi.org/10.1016/j.molstruc.2020.127759

    Article  CAS  Google Scholar 

  9. Gandhimathi R, Dhanasekaran R (2012) Structural, thermal, mechanical and z-scan studies on 4-nitrophenol single crystals. Cryst Res Technol 47:385–390. https://doi.org/10.1002/crat.201100510

    Article  CAS  Google Scholar 

  10. Vij M, Sonia Verma HK et al (2018) Nonlinear optical single crystal of l-cystine hydrochloride: insights into the crystalline perfection, thermal, mechanical and optical properties for device fabrication. Phys B 550:250–259. https://doi.org/10.1016/j.physb.2018.09.013

    Article  CAS  Google Scholar 

  11. ter Horst JH, Deij MA, Cains PW (2009) Discovering new Co-crystals. Cryst Growth Des 9:1531–1537. https://doi.org/10.1021/cg801200h

    Article  CAS  Google Scholar 

  12. Kaminsky W (2007) From CIF to virtual morphology using the WinXMorph program. J Appl Crystallogr 40:382–385. https://doi.org/10.1107/S0021889807003986

    Article  CAS  Google Scholar 

  13. Duggirala NK, Perry ML, Almarsson Ö, Zaworotko MJ (2016) Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun 52:640–655. https://doi.org/10.1039/C5CC08216A

    Article  CAS  Google Scholar 

  14. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32. https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  15. Anis M, Shkir M, AlFaify S et al (2020) Exploring remarkable impact of thiourea in enhancing the performance of NH4H2PO4 single crystal for photonic device applications. Mater Chem Phys 246:122809. https://doi.org/10.1016/j.matchemphys.2020.122809

    Article  CAS  Google Scholar 

  16. Caires CJ, Lima LS, Carvalho CT, Ionashiro M (2010) Thermal behaviour of succinic acid, sodium succinate and its compounds with some bivalent transitions metal ions in dynamic N2 and CO2 atmospheres. São Paulo 8

  17. Paramasivam P, Raja CR (2012) Crystallization and characterization of a new nonlinear optical crystal: l proline succinate (LPS). JCPT 02:21–24. https://doi.org/10.4236/jcpt.2012.21004

    Article  CAS  Google Scholar 

  18. Mullai RU, Jothi AR, Suresh T et al (2020) Growth and study of piperazine doped succinic acid single crystals for NLO applications. Emerg Mater Res 9:1–9. https://doi.org/10.1680/jemmr.17.00075

    Article  Google Scholar 

  19. Kao K-C (2004) Dielectric phenomena in solids: with emphasis on physical concepts of electronic processes. Academic Press, Boston

    Google Scholar 

  20. Sheik-Bahae M, Said AA, Wei T-H et al (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quant Electron 26:760–769. https://doi.org/10.1109/3.53394

    Article  CAS  Google Scholar 

  21. DeLong KW, Rochford KB, Stegeman GI (1989) Effect of two-photon absorption on all-optical guided-wave devices. Appl Phys Lett 55:1823–1825. https://doi.org/10.1063/1.102177

    Article  CAS  Google Scholar 

  22. Mendonca CR, Correa DS, Baldacchini T, et al (2006) A novel photoinitiator for microfabrication via two-photon polymerization. In: 2006 conference on lasers and electro-optics and 2006 quantum electronics and laser science conference. IEEE, Long Beach, CA

  23. Sheik-Bahae M, Hasselbeck MP (2000) Third-order optical nonlinearities. Handbook of Optics 4:16–21

    Google Scholar 

Download references

Acknowledgements

The authors are highly obliged to thank Director Dr. D. K. Aswal, CSIR-NPL for his continuous encouragement and support in carrying out the present work. One of the authors, Mahak Vij, is highly thankful to the CSIR-Council of Scientific and Industrial Research (Grant Number: 31/01(0497)/2018-EMR-1) for giving financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Maurya.

Ethics declarations

Conflicts of interest

There is no conflict of interest associated with this research.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vij, M., Yadav, H., Vashistha, N. et al. Crystal structure, Hirshfeld surface analysis and thermal behavior of diisopropylammonium succinate, a novel third-order nonlinear optical crystal. J Mater Sci 55, 16900–16913 (2020). https://doi.org/10.1007/s10853-020-05181-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05181-6

Navigation