Skip to main content

Advertisement

Log in

First principles study on optoelectronic properties of energetically stable Si/InS van der Waals heterobilayers

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The combination of van der Waals heterostructures by stacking different kinds of two-dimensional structures is an effective method to design optoelectronic devices. In this work, the electronic and optical properties of vertically stacked Si/InS heterostructures are investigated by using density functional theory. We check the dynamical stability of all possible bilayer configurations of Si/InS and only stable stackings are taken into account for the analysis of electronic and optical properties. The stacking-dependent band structures are calculated together with their alignment by regarding the contribution of layers that construct the heterostructure. The band alignment of the heterobilayer systems suggests type-I and type-II heterostructure formation according to their stacking pattern. The charge transfer between layers and work function of heterobilayers is also analyzed. We find that the Si/InS heterostructure forms an n-type Schottky contact with stacking-dependent Schottky barrier height of \(\sim\)0.6–0.06 eV. Moreover, the effects of the perpendicular electric field were investigated on the electronic properties of Si/InS heterobilayers. Furthermore, it is shown that Schottky barrier height can be efficiently tuned by the variation of external electric field. The Si/InS heterostructure keeps a n-type Schottky contact for the all electric field values whereas the magnitude and the direction of the electric field enable the possibility of transformation between Schottky contact and ohmic contact at the Si/InS interface. Finally, the optical properties of Si/InS are also examined as part of density functional theory calculations by considering the imaginary part of the dielectric function. Here it is shown that absorption spectrum strongly depends on the stacking patterns of Si/InS heterostructure and these structures include strong prominent absorption peaks over the infrared and ultraviolet range. These results presented that Si/InS bilayer heterostructures may provide helpful information for the design and the fabrication of silicene-based two-dimensional van der Waals heterostructures that can be good candidates for tunable optoelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    CAS  Google Scholar 

  2. Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on sio 2. Nat Nanotechnol 3:206–209

    CAS  Google Scholar 

  3. Morozov S, Novoselov K, Katsnelson M, Schedin F, Elias D, Jaszczak JA, Geim A (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:016602

    CAS  Google Scholar 

  4. Qiao J, Kong X, Hu Z-X, Yang F, Ji W (2014) High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 5:1–7

    Google Scholar 

  5. Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377

    CAS  Google Scholar 

  6. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer mos 2 transistors. Nat Nanotechnol 6:147–150

    CAS  Google Scholar 

  7. Radisavljevic B, Kis A (2013) Mobility engineering and a metal-insulator transition in monolayer mos 2. Nat Mater 12:815–820

    CAS  Google Scholar 

  8. Shao Z-G, Ye X-S, Yang L, Wang C-L (2013) First-principles calculation of intrinsic carrier mobility of silicene. J Appl Phys 114:093712

    Google Scholar 

  9. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14:271–279

    CAS  Google Scholar 

  10. Feyzi A, Chegel R (2016) Heat capacity, electrical and thermal conductivity of silicene. Eur Phys J B 89:1–8

    CAS  Google Scholar 

  11. Huang X, Sheng P, Tu Z, Zhang F, Wang J, Geng H, Zou Y, Di C-A, Yi Y, Sun Y et al (2015) A two-dimensional \(\pi\)-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behavior. Nat Commun 6(1):1–8

    Google Scholar 

  12. Zhang Z, Niu J, Yang P, Gong Y, Ji Q, Shi J, Fang Q, Jiang S, Li H, Zhou X et al (2017) Van der waals epitaxial growth of 2d metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv Mater 29:1702359

    Google Scholar 

  13. Acerce M, Voiry D, Chhowalla M (2015) Metallic 1t phase mos 2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10:313–318

    CAS  Google Scholar 

  14. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(385):388

    Google Scholar 

  15. Zhang P, Ma L, Fan F, Zeng Z, Peng C, Loya PE, Liu Z, Gong Y, Zhang J, Zhang X et al (2014) Fracture toughness of graphene. Nat Commun 5:1–7

    Google Scholar 

  16. Zandiatashbar A, Lee G-H, An SJ, Lee S, Mathew N, Terrones M, Hayashi T, Picu CR, Hone J, Koratkar N (2014) Effect of defects on the intrinsic strength and stiffness of graphene. Nat Commun 5:1–9

    Google Scholar 

  17. Zhang S, Wang N, Liu S, Huang S, Zhou W, Cai B, Xie M, Yang Q, Chen X, Zeng H (2016) Two-dimensional ges with tunable electronic properties via external electric field and strain. Nanotechnology 27:274001

    Google Scholar 

  18. Lu N, Guo H, Li L, Dai J, Wang L, Mei W-N, Wu X, Zeng XC (2014) Mos 2/mx 2 heterobilayers: bandgap engineering via tensile strain or external electrical field. Nanoscale 6:2879–2886

    CAS  Google Scholar 

  19. Jin H, Li J, Dai Y, Wei Y (2017) Engineering the electronic and optoelectronic properties of inx (x= s, se, te) monolayers via strain. Phys Chem Chem Phys 19:4855–4860

    CAS  Google Scholar 

  20. Peng Q, Wang Z, Sa B, Wu B, Sun Z (2016) Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der waals heterostructures. Sci Rep 6:31994

    CAS  Google Scholar 

  21. You B, Wang X, Zheng Z, Mi W (2016) Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der waals heterostructures: a first-principles study. Phys Chem Chem Phys 18:7381–7388

    CAS  Google Scholar 

  22. Cui Z, Ren K, Zhao Y, Wang X, Shu H, Yu J, Tang W, Sun M (2019) Electronic and optical properties of van der waals heterostructures of g-gan and transition metal dichalcogenides. Appl Surf Sci 492:513–519

    CAS  Google Scholar 

  23. Shang J, Pan L, Wang X, Li J, Deng H-X, Wei Z (2018) Tunable electronic and optical properties of inse/inte van der waals heterostructures toward optoelectronic applications. J Mater Chem C 6:7201–7206. https://doi.org/10.1039/C8TC01533C

    Article  CAS  Google Scholar 

  24. Aziza ZB, Pierucci D, Henck H, Silly MG, David C, Yoon M, Sirotti F, Xiao K, Eddrief M, Girard J-C et al (2017) Tunable quasiparticle band gap in few-layer gase/graphene van der waals heterostructures. Phys RevB 96:035407

    Google Scholar 

  25. Aretouli K, Tsipas P, Tsoutsou D, Marquez-Velasco J, Xenogiannopoulou E, Giamini S, Vassalou E, Kelaidis N, Dimoulas A (2015) Two-dimensional semiconductor hfse2 and mose2/hfse2 van der waals heterostructures by molecular beam epitaxy. Appl Phys Lett 106:143105

    Google Scholar 

  26. Ma Y, Zhao X, Wang T, Li W, Wang X, Chang S, Li Y, Zhao M, Dai X (2016) Band structure engineering in a mos 2/pbi 2 van der waals heterostructure via an external electric field. Phys Chem Chem Phys 18:28466–28473

    CAS  Google Scholar 

  27. Zhang R, Li B, Yang J (2015) Effects of stacking order, layer number and external electric field on electronic structures of few-layer c 2 n-h 2d. Nanoscale 7:14062–14070

    CAS  Google Scholar 

  28. Kang J, Tongay S, Zhou J, Li J, Wu J (2013) Band offsets and heterostructures of two-dimensional semiconductors. Appl Phys Lett 102:012111

    Google Scholar 

  29. Conley HJ, Wang B, Ziegler JI, Haglund RF Jr, Pantelides ST, Bolotin KI (2013) Bandgap engineering of strained monolayer and bilayer mos2. Nano Lett 13:3626–3630

    CAS  Google Scholar 

  30. Li C, Cao Q, Wang F, Xiao Y, Li Y, Delaunay J-J, Zhu H (2018) Engineering graphene and tmds based van der waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem Soc Rev 47:4981–5037

    CAS  Google Scholar 

  31. Hunt A, Kurmaev E, Moewes A (2014) Band gap engineering of graphene oxide by chemical modification. Carbon 75:366–371

    CAS  Google Scholar 

  32. Zhang H, Zhang Y-N, Liu H, Liu L-M (2014b) Novel heterostructures by stacking layered molybdenum disulfides and nitrides for solar energy conversion. J Mater Chem A 2:15389–15395. https://doi.org/10.1039/C4TA03134B

    Article  CAS  Google Scholar 

  33. Shu H, Li Y, Niu X, Wang J (2016) The stacking dependent electronic structure and optical properties of bilayer black phosphorus. Phys Chem Chem Phys 18:6085–6091

    CAS  Google Scholar 

  34. Stander N, Huard B, Goldhaber-Gordon D (2009) Evidence for klein tunneling in graphene p-n junctions. Phys Rev Lett 102:026807

    CAS  Google Scholar 

  35. Pospischil A, Furchi MM, Mueller T (2014) Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat Nanotechnol 9:257–261

    CAS  Google Scholar 

  36. Lee C-H, Lee G-H, Van Der Zande AM, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz TF et al (2014) Atomically thin p-n junctions with van der waals heterointerfaces. Nat Nanotechnol 9:676–681

    CAS  Google Scholar 

  37. Li M-Y, Shi Y, Cheng C-C, Lu L-S, Lin Y-C, Tang H-L, Tsai M-L, Chu C-W, Wei K-H, He J-H et al (2015) Epitaxial growth of a monolayer wse2-mos2 lateral pn junction with an atomically sharp interface. Science 349:524–528

    CAS  Google Scholar 

  38. Patel N, Choudhary S (2017) Current saturation and kink effect in zero-bandgap double-gate silicene field-effect transistors. Superlattices Microstruct 110:155–161

    CAS  Google Scholar 

  39. Hu W, Yang J (2017) Two-dimensional van der waals heterojunctions for functional materials and devices. J Mater Chem C 5:12289–12297. https://doi.org/10.1039/C7TC04697A

    Article  CAS  Google Scholar 

  40. Zeng H, Zhao J, Cheng A-Q, Zhang L, He Z, Chen R-S (2018) Tuning electronic and optical properties of arsenene/c3n van der waals heterostructure by vertical strain and external electric field. Nanotechnology 29:075201

    Google Scholar 

  41. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Google Scholar 

  42. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF et al (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS nano 7:2898

    CAS  Google Scholar 

  43. Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, Liu CC, Zhong H, Han N, Lu J et al (2016) Rise of silicene: a competitive 2d material. Prog Mater Sci 83:24–151

    CAS  Google Scholar 

  44. Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD (2014) Phosphorene: an unexplored 2d semiconductor with a high hole mobility. ACS nano 8:4033

    CAS  Google Scholar 

  45. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnol 7:699–712

    CAS  Google Scholar 

  46. Takagi N, Lin C-L, Kawahara K, Minamitani E, Tsukahara N, Kawai M, Arafune R (2015) Silicene on Ag (1 1 1): geometric and electronic structures of a new honeycomb material of Si. Prog Surf Sci 90:1–20

    CAS  Google Scholar 

  47. Molle A, Grazianetti C, Tao L, Taneja D, Alam MH, Akinwande D (2018) Silicene, silicene derivatives, and their device applications. Chem Soc Rev 47:6370–6387

    CAS  Google Scholar 

  48. Wandelt K (2018) Encyclopedia of interfacial chemistry: surface science and electrochemistry. Elsevier, Amsterdam

    Google Scholar 

  49. Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y (2012) Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett 108:245501

    Google Scholar 

  50. Qin R, Zhu W, Zhang Y, Deng X (2014) Uniaxial strain-induced mechanical and electronic property modulation of silicene. Nanoscale Res Lett 9:1–7

    Google Scholar 

  51. Morishita T, Spencer MJ, Kawamoto S, Snook IK (2013) A new surface and structure for silicene: polygonal silicene formation on the Al (111) surface. J Phys Chem C 117:22142–22148

    CAS  Google Scholar 

  52. Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K (2012) Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett 12:3507–3511

    CAS  Google Scholar 

  53. Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M, Molle A (2014) Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv Mater 26:2096–2101

    CAS  Google Scholar 

  54. Mudd GW, Svatek SA, Ren T, Patanè A, Makarovsky O, Eaves L, Beton PH, Kovalyuk ZD, Lashkarev GV, Kudrynskyi ZR et al (2013) Tuning the bandgap of exfoliated inse nanosheets by quantum confinement. Adv Mater 25:5714–5718

    CAS  Google Scholar 

  55. Lauth J, Gorris FE, Samadi Khoshkhoo M, Chass T, Friedrich W, Lebedeva V, Meyer A, Klinke C, Kornowski A, Scheele M et al (2016) Solution-processed two-dimensional ultrathin InSe nanosheets. Chem Mater 28:1728–1736

    CAS  Google Scholar 

  56. Fan Y, Liu X, Wang J, Ai H, Zhao M (2018) Silicene and germanene on inse substrates: structures and tunable electronic properties. Phys Chem Chem Phys 20:11369–11377

    CAS  Google Scholar 

  57. Late DJ, Liu B, Matte HR, Rao C, Dravid VP (2012) Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. Adv Funct Mater 22:1894–1905

    CAS  Google Scholar 

  58. Hu P, Wang L, Yoon M, Zhang J, Feng W, Wang X, Wen Z, Idrobo JC, Miyamoto Y, Geohegan DB et al (2013) Highly responsive ultrathin gas nanosheet photodetectors on rigid and flexible substrates. Nano Lett 13:1649–1654

    CAS  Google Scholar 

  59. Lei S, Ge L, Liu Z, Najmaei S, Shi G, You G, Lou J, Vajtai R, Ajayan PM (2013) Synthesis and photoresponse of large gase atomic layers. Nano Lett 13:2777–2781

    CAS  Google Scholar 

  60. Demirci S, Avazlı N, Durgun E, Cahangirov S (2017) Structural and electronic properties of monolayer group III monochalcogenides. Phys Rev B 95:115409

    Google Scholar 

  61. Miró P, Audiffred M, Heine T (2014) An atlas of two-dimensional materials. Chem Soc Rev 43:6537–6554

    Google Scholar 

  62. Zhou S, Liu C-C, Zhao J, Yao Y (2018) Monolayer group-iii monochalcogenides by oxygen functionalization: a promising class of two-dimensional topological insulators. npj Quantum Mater 3:1–7

    Google Scholar 

  63. Jalilian J, Safari M (2017) Electronic and optical properties of \(\alpha\)-inx (X= S, Se and Te) monolayer: under strain conditions. Phys Lett A 381:1313–1320

    CAS  Google Scholar 

  64. Zhuang HL, Hennig RG (2013) Single-layer group-iii monochalcogenide photocatalysts for water splitting. Chem Mater 25:3232–3238

    CAS  Google Scholar 

  65. Jin H, Li J, Wang B, Yu Y, Wan L, Xu F, Dai Y, Wei Y, Guo H (2016) Electronics and optoelectronics of lateral heterostructures within monolayer indium monochalcogenides. J Mater Chem C 4:11253–11260. https://doi.org/10.1039/C6TC04241D

    Article  CAS  Google Scholar 

  66. Wang B-J, Li X-H, Zhao R, Cai X-L, Yu W-Y, Li W-B, Liu Z-S, Zhang L-W, Ke S-H (2018) Electronic structures and enhanced photocatalytic properties of blue phosphorene/bse van der waals heterostructures. J Mater Chem A 6:8923–8929. https://doi.org/10.1039/C8TA01019F

    Article  CAS  Google Scholar 

  67. Sun M, Chou J-P, Yu J, Tang W (2017) Electronic properties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures. Phys Chem Chem Phys 19:17324–17330

    CAS  Google Scholar 

  68. Britnell L, Gorbachev R, Jalil R, Belle B, Schedin F, Mishchenko A, Georgiou T, Katsnelson M, Eaves L, Morozov S et al (2012) Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335:947–950

    CAS  Google Scholar 

  69. Yu WJ, Li Z, Zhou H, Chen Y, Wang Y, Huang Y, Duan X (2013) Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat Mater 12:246–252

    CAS  Google Scholar 

  70. Roy K, Padmanabhan M, Goswami S, Sai TP, Ramalingam G, Raghavan S, Ghosh A (2013) Graphene-MoS 2 hybrid structures for multifunctional photoresponsive memory devices. Nat Nanotechnol 8:826–830

    CAS  Google Scholar 

  71. Shih C-J, Wang QH, Son Y, Jin Z, Blankschtein D, Strano MS (2014) Tuning on-off current ratio and field-effect mobility in a mos2-graphene heterostructure via schottky barrier modulation. ACS Nano 8:5790–5798

    CAS  Google Scholar 

  72. Nguyen CV (2018) Tuning the electronic properties and schottky barrier height of the vertical graphene/mos2 heterostructure by an electric gating. Superlattices Microstruct 116:79–87

    CAS  Google Scholar 

  73. Hu W, Wang T, Yang J (2015) Tunable schottky contacts in hybrid graphene-phosphorene nanocomposites. J Mater Chem C 3:4756–4761

    CAS  Google Scholar 

  74. Phuc HV, Ilyasov VV, Hieu NN, Nguyen CV (2018) Electric-field tunable electronic properties and schottky contact of graphene/phosphorene heterostructure. Vacuum 149:231–237

    CAS  Google Scholar 

  75. Li W, Wang T-X, Dai X-Q, Wang X-L, Ma Y-Q, Chang S-S, Tang Y-N (2017a) Tuning the schottky barrier in the arsenene/graphene van der waals heterostructures by electric field. Phys E: Low-dimens Syst Nanostruct 88:6–10

    CAS  Google Scholar 

  76. Li W, Wang X, Dai X (2017b) Tunable schottky contacts in the antimonene/graphene van der waals heterostructures. Solid State Commun 254:37–41

    CAS  Google Scholar 

  77. Zhang F, Li W, Ma Y, Dai X (2018) Schottky barrier tuning of the graphene/sns2 van der waals heterostructures through electric field. Solid State Commun 271:56–61

    CAS  Google Scholar 

  78. Pham KD, Hieu NN, Ilyasov VV, Phuc HV, Hoi BD, Feddi E, Thuan NV, Nguyen CV (2018) First principles study on the electronic properties and schottky barrier of graphene/inse heterostructure. Superlattices Microstruct 122:570–576

    CAS  Google Scholar 

  79. Le P, Hieu NN, Bui LM, Phuc HV, Hoi BD, Amin B, Nguyen CV (2018) Structural and electronic properties of a van der waals heterostructure based on silicene and gallium selenide: effect of strain and electric field. Phys Chem Chem Phys 20:27856–27864

    CAS  Google Scholar 

  80. Yelgel C (2019) Tunable electronic properties of van der waals heterostructures composed of stanene adsorbed on two-dimensional, graphene-like nitrides. J Appl Phys 125:155301

    Google Scholar 

  81. Xiong W, Xia C, Zhao X, Wang T, Jia Y (2016) Effects of strain and electric field on electronic structures and schottky barrier in graphene and sns hybrid heterostructures. Carbon 109:737–746

    CAS  Google Scholar 

  82. Gao X, Shen Y, Ma Y, Wu S, Zhou Z (2019) Graphene/gete van der waals heterostructure: functional schottky device with modulated schottky barriers via external strain and electric field. Comput Mater Sci 170:109200

    CAS  Google Scholar 

  83. Pham KD, Hieu NN, Phuc HV, Fedorov I, Duque C, Amin B, Nguyen CV (2018b) Layered graphene/gas van der waals heterostructure: controlling the electronic properties and schottky barrier by vertical strain. Appl Phys Lett 113:171605

    Google Scholar 

  84. Gillen R, Robertson J, Maultzsch J (2014) Indirect doping effects from impurities in mos 2/h-bn heterostructures. Phys Rev B 90:075437

    Google Scholar 

  85. Du Y, Zhuang J, Liu H, Xu X, Eilers S, Wu K, Cheng P, Zhao J, Pi X, See KW et al (2014) Tuning the band gap in silicene by oxidation. ACS Nano 8:10019–10025

    CAS  Google Scholar 

  86. Xu X, Zhuang J, Du Y, Feng H, Zhang N, Liu C, Lei T, Wang J, Spencer M, Morishita T et al (2014) Effects of oxygen adsorption on the surface state of epitaxial silicene on ag (111). Sci Rep 4:7543

    Google Scholar 

  87. Li X, Lin M-W, Lin J, Huang B, Puretzky AA, Ma C, Wang K, Zhou W, Pantelides ST, Chi M et al (2016a) Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der waals epitaxy. Sci Adv 2:e1501882

    Google Scholar 

  88. Li B, Huang L, Zhong M, Li Y, Wang Y, Li J, Wei Z (2016b) Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv Electr Mater 2:1600298

    Google Scholar 

  89. Wang H, Liu F, Fu W, Fang Z, Zhou W, Liu Z (2014) Two-dimensional heterostructures: fabrication, characterization, and application. Nanoscale 6:12250–12272

    CAS  Google Scholar 

  90. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    CAS  Google Scholar 

  91. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid–metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269

    CAS  Google Scholar 

  92. Kresse G, Furthmüller J (1996a) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    CAS  Google Scholar 

  93. Kresse G, Furthmüller J (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    CAS  Google Scholar 

  94. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Google Scholar 

  95. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  Google Scholar 

  96. Powell MJD (1977) Restart procedures for the conjugate gradient method. Math Program 12:241–254

    Google Scholar 

  97. Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188–5192

    Google Scholar 

  98. Grimme S (2006) Semi empirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    CAS  Google Scholar 

  99. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened coulomb potential. J Chem Phys 118:8207–8215

    CAS  Google Scholar 

  100. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106

    Google Scholar 

  101. Tang W, Sanville E, Henkelman G (2009) A grid-based bader analysis algorithm without lattice bias. J Phys: Condens Matter 21:084204

    CAS  Google Scholar 

  102. Sanville E, Kenny SD, Smith R, Henkelman G (2007) Improved grid-based algorithm for Bader charge allocation. J Comput Chem 28:899–908

    CAS  Google Scholar 

  103. Henkelman G, Arnaldsson A, Jnsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360

    Google Scholar 

  104. Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Scripta Mater 108:1–5

    CAS  Google Scholar 

  105. Ding Y, Wang Y (2013) Electronic structures of silicene/gas heterosheets. Appl Phys Lett 103:043114

    Google Scholar 

  106. Zólyomi V, Drummond N, Fal’Ko V (2014) Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculations. Phys Rev B 89:205416

    Google Scholar 

  107. Ayadi T, Debbichi L, Said M, Lebègue S (2017) An ab initio study of the electronic structure of indium and gallium chalcogenide bilayers. J Chem Phys 147:114701

    CAS  Google Scholar 

  108. Mogulkoc A, Mogulkoc Y, Modarresi M, Alkan B (2018a) Electronic structure and optical properties of novel monolayer gallium nitride and boron phosphide heterobilayers. Phys Chem Chem Phys 20:28124–28134

    CAS  Google Scholar 

  109. Mogulkoc Y, Modarresi M, Mogulkoc A, Alkan B (2018b) Electronic and optical properties of boron phosphide/blue phosphorus heterostructures. Phys Chem Chem Phys 20:12053–12060

    CAS  Google Scholar 

  110. Modarresi M, Mogulkoc A, Mogulkoc Y, Rudenko A (2019) Lateral spin valve based on the two-dimensional CrN/P/CrN heterostructure. Phys Rev Appl 11:064015

    CAS  Google Scholar 

  111. Ukpong AM (2015) First principles study of van der waals heterobilayers. Comput Condens Matter 2:1–10

    Google Scholar 

  112. Kaloni T, Kou L, Frauenheim T, Schwingenschlögl U (2014) Quantum spin hall states in graphene interacting with WS2 or WSe2. Appl Phys Lett 105:233112

    Google Scholar 

  113. Chen D, Lei X, Wang Y, Zhong S, Liu G, Xu B, Ouyang C (2019) Tunable electronic structures in BP/MoSSe van der waals heterostructures by external electric field and strain. Appl Surf Sci 497:143809

    Google Scholar 

  114. Mohanta MK, Rawat A, Jena N, Dimple R Ahammed, De Sarkar A (2020) Interfacing boron monophosphide with molybdenum disulfide for an ultrahigh performance in thermoelectrics, two-dimensional excitonic solar cells, and nanopiezotronics. ACS Appl Mater Interfaces 12:3114–3126

    CAS  Google Scholar 

  115. Gong C, Zhang H, Wang W, Colombo L, Wallace RM, Cho K (2013) Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl Phys Lett 103:053513

    Google Scholar 

  116. Nakamura S, Senoh M, Iwasa N, Nagahama S-I (1995) High-brightness ingan blue, green and yellow light-emitting diodes with quantum well structures. Jpn J Appl Phys 34:L797–L799

    CAS  Google Scholar 

  117. Palacios-Berraquero C (2018) Atomically-thin quantum light emitting diodes, in quantum confined excitons in 2-dimensional materials. Springer, Berlin, pp 71–89

    Google Scholar 

  118. Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney A, Gholinia A, Watanabe K, Taniguchi T, Haigh S, Geim A, Tartakovskii A et al (2015) Light-emitting diodes by band-structure engineering in van der waals heterostructures. Nat Mater 14:301–306

    CAS  Google Scholar 

  119. Chen M, Zhong Z, Weinert M (2016) Designing substrates for silicene and germanene: first-principles calculations. Phys Rev B 94:075409

    Google Scholar 

  120. Sahin H, Peeters FM (2013) Adsorption of alkali, alkaline-earth, and 3 d transition metal atoms on silicene. Phys Rev B 87:085423

    Google Scholar 

  121. Liu H, Gao J, Zhao J (2013) Silicene on substrates: a way to preserve or tune its electronic properties. J Phys Chem C 117:10353–10359

    CAS  Google Scholar 

  122. Schottky W (1939) Theory of blocking layer and point rectifiers. Z. Phys 113:367–414

    CAS  Google Scholar 

  123. Mott NF (1939) The theory of crystal rectifiers. Proc Royal Soc Lond Series A Math Phys Sci 171:27–38

    Google Scholar 

  124. Bardeen J (1947) Surface states and rectification at a metal semi-conductor contact. Phys Rev 71:717–727

    Google Scholar 

  125. Tung RT (2014) The physics and chemistry of the Schottky barrier height. Appl Phys Rev 1:011304

    Google Scholar 

  126. Malkova N, Bryant GW (2010) Negative-band-gap quantum dots: gap collapse, intrinsic surface states, excitonic response, and excitonic insulator phase. Phys Rev B 82:155314

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Ankara University for high performance computing facility through the AYP under Grant No. 17A0443001. The numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Mogulkoc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4432 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caglayan, R., Mogulkoc, Y., Mogulkoc, A. et al. First principles study on optoelectronic properties of energetically stable Si/InS van der Waals heterobilayers. J Mater Sci 55, 15199–15212 (2020). https://doi.org/10.1007/s10853-020-05094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05094-4

Navigation