Skip to main content
Log in

Friction stir spot welding of TiO2 nanoparticle-reinforced interstitial free steel

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The purpose of the current study was to investigate the effect of different content of TiO2 nanoparticles and FSSW parameter such as tool rotational speed on microstructure and mechanical properties of IF steel FSSW joints. FSSW joints were realized by adding 0.45, 1.14, 2 wt% of TiO2nanoparticles to IF steel. Optical microscopy and scanning electron microscopy and energy dispersive spectroscopy studied along with the results of microhardness measurements and tensile shear analyses. The obtained results showed that the optimal welding conditions were a tool rotational speed of 1120 rpm and a dwell time of 9 s. Microstructural observations demonstrated a good dispersion of TiO2 reinforcements in the steel matrix. TiO2 nanoparticles addition led to a remarkable increase in the mechanical properties of the produced welds. This was attributed to the fine grain size obtained thanks to the ceramic particles addition. The hardness and ultimate load of joints produced by TiO2 amount of 1.14 wt% are optimum welding conditions for fabrication of the best quality of welds which have attributed to the uniform dispersion of TiO2 nanoparticles in the weld regions. For higher than 1.14 wt% content of TiO2, nanoparticles agglomeration occurred, this resulted in the decrease in strength and ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

taken from the stir zone. The red and yellow arrows are attributed to TiO2 agglomerates and TiO2 nanoparticles, respectively

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. Yuan W, Mishra RS, Webb S et al (2011) Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds. J Mater Proc Technol 211(6):972–977

    Article  CAS  Google Scholar 

  2. Tebyani SF, Dehghani K (2016) Effects of SiC nanopowders on the mechanical properties and microstructure of interstitial free steel joined via friction stir spot welding. Mater Des 90:660–668

    Article  CAS  Google Scholar 

  3. Gerlich AP, North TH (2010) Friction stir spot welding. In Innovations in materials manufacturing, fabrication, and environmental safety, pp. 193–218. CRC Press, Boca Raton. https://doi.org/10.1201/b10386

  4. Sun Y, Fujii H (2011) The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints. Mater Sci Eng A528(16):5470–5475

    Article  Google Scholar 

  5. Tebyani SF, Dehghani K (2015) Friction stir spot welding of interstitial free steel with incorporating silicon carbide nanopowders. Int J Adv Manuf Technol 79(1–4):343–350

    Article  Google Scholar 

  6. Sun YF, Shen JM, Morisada Y, Fujii H (2014) Spot friction stir welding of low carbon steel plates preheated by high frequency induction. Mater Des 54:450–457

    Article  CAS  Google Scholar 

  7. Pouranvari M, Marashi SPH (2013) Critical review of automotive steels spot welding: process, structure and properties. Sci Technol Weld Join 18(5):361–403

    Article  CAS  Google Scholar 

  8. Baridula RR, Ramaraju RV, Ibrahim AB et al (2017) Effect of Nano Particle Deposition on Mechanical Properties of Friction Stir Welded Dissimilar Aluminium Alloys by Taguchi Technique. Trans Ind Inst Met 70(4):1005–1017

    Article  CAS  Google Scholar 

  9. Li S, Chen Y, Zhou X, Kang J, Huang Y, Deng H (2019) High-strength titanium alloy/steel butt joint produced via friction stir welding. Meter Lett 234:155–158

    Article  CAS  Google Scholar 

  10. Li S, Chen Y, Kang J, Huang Y, Gianetto JA, Yin L (2019) Interfacial microstructures and mechanical properties of dissimilar titanium alloy and steel friction stir butt-welds. J Manuf Proc 40:160–168

    Article  CAS  Google Scholar 

  11. Li S, Chen Y, Kang J, Amirkhiz BS, NAdeau F (2018) Effect of revolutionary pitch on interface microstructure and mechanical behavior of friction stir lap welds of AA6082-T6 to galvanized DP800. Metals 8(11):925. https://doi.org/10.3390/met8110925

    Article  CAS  Google Scholar 

  12. Karakizis P, Pantelis DI, Foularis G, Tsakiridis P (2018) The role of SiC and TiC nanoparticle reinforcement on AA5083-H111 friction stir welds studied by electron microscopy and mechanical testing. Int J Adv Manuf Technol 94:4159–4176

    Article  Google Scholar 

  13. Saeidi M, Behnagh RA, Manafi B et al (2016) Study on ultrafine-grained aluminum matrix nanocomposite joint fabricated by friction stir welding. P I Mech Eng-J Mat 230(1):311–318

    CAS  Google Scholar 

  14. Fouladi S, Abbasi M (2017) The effect of friction stir vibration welding process on characteristics of SiO2 incorporated joint. J Mater Proc Technol 243:23–30

    Article  CAS  Google Scholar 

  15. Pouriamanesh R et al. (2016) Effect of friction stir welding on microstructure and properties of micro-TiO2 doped HSLA Steel. In: 41th CWS international conference welding 2016.

  16. Li S, Chen Y, Kang J, Amirkhiz BS, NaAdeau F (2019) Friction stir lap welding of aluminum alloy to advanced high strength steel using a cold-spray deposition as an interlayer. Mater Lett 239:212–215

    Article  CAS  Google Scholar 

  17. Sadeghi B, Shamanian M, Ashrafizadeh F et al (2017) Influence of Al2O3 nanoparticles on microstructure and strengthening mechanism of Al-based nanocomposites produced via spark plasma sintering. J Mater Eng Perf 26(6):2928–2936

    Article  CAS  Google Scholar 

  18. Babu NK, Kallip K, Laparoux M et al (2016) Influence of microstructure and strengthening mechanism of AlMg5–Al2O3 nanocomposites prepared via spark plasma sintering. Mater Des 95:534–544

    Article  CAS  Google Scholar 

  19. Dash K, Chaira D, Ray BC (2013) Synthesis and characterization of aluminium–alumina micro-and nano-composites by spark plasma sintering. Mater Res Bull 48(7):2535–2542

    Article  CAS  Google Scholar 

  20. Khodabakhshi F, Yazdabadi GH, Kokabi AH et al (2013) Friction stir welding of a P/M Al–Al2O3 nanocomposite: Microstructure and mechanical properties. Mater Sci Eng 585:222–232

    Article  CAS  Google Scholar 

  21. Mirjavadi SS, Alipour M, Emamian S et al (2017) Influence of TiO2 nanoparticles incorporation to friction stir welded 5083 aluminum alloy on the microstructure, mechanical properties and wear resistance. J Alloys Compd 712:795–803

    Article  CAS  Google Scholar 

  22. Daniyan A, Umoru L, Fayomi O et al (2018) The effect of TiO2 particulate reinforcement on the microstructure and mechanical properties of binary nano-composite on low carbon steel. IOP Conf Ser Mater Sci Eng 391:012002

    Article  Google Scholar 

  23. Rueden CT, Schindelin J, Hiner MC et al (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18(1):529. https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  24. Schneider CA, Rasband WS, Eliceiri KWNIH (2012) Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  25. Association JS (1999) Specimens dimensions and procedure for shear testing resistance spot and embossed projection welded joints. Japanese Standards Association, Japan, JIS, p 3136

    Google Scholar 

  26. Tozaki Y, Uematsu Y, Tokaji K (2010) A newly developed tool without probe for friction stir spot welding and its performance. J Mater Proc Technol 210(6–7):844–851

    Article  CAS  Google Scholar 

  27. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(1–2):1–78

    Article  Google Scholar 

  28. Dehghani K, Chabok A (2011) Dependence of Zener parameter on the nanograins formed during friction stir processing of interstitial free steels. Mater Sci Eng A 528(13–14):4325–4330

    Article  Google Scholar 

  29. Sadeghi B, Shamanian M, Ashrafizadeh F et al (2018) Friction stir processing of spark plasma sintered aluminum matrix composites with bimodal micro- and nano-sized reinforcing Al2O3 particles. J Manuf Proc 32:412–424

    Article  Google Scholar 

  30. Sadeghi B, Shamanian M, Ashrafizadeh F et al (2018) FSW of bimodal reinforced Al-based composites produced via spark plasma sintering. Int J Mater Res 108(12):1045–1054

    Article  Google Scholar 

  31. Khodabakhshi F, Simchi A, Kokabi AH et al (2015) Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminum–magnesium alloy. Mater Sci Eng A 642:215–229

    Article  CAS  Google Scholar 

  32. Khodabakhshi F et al (2015) Effects of stored strain energy on restoration mechanisms and texture components in an aluminum–magnesium alloy prepared by friction stir processing. Mater Sci Eng, A 642:204–214

    Article  CAS  Google Scholar 

  33. Eskandari H, Taheri R, Khodabakhshi F (2016) Friction-stir processing of an AA8026–TiB2–Al2O3 hybrid nanocomposite: microstructural developments and mechanical properties. Mater Sci Eng A 660:84–96

    Article  CAS  Google Scholar 

  34. McNelley TR, Swaminathan S, Su JQ (2008) Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scripta Mater 58(5):349–354

    Article  CAS  Google Scholar 

  35. Cavaliere P (2013) Friction stir welding of al alloys: analysis of processing parameters affecting mechanical behavior. Procedia CIRP 11:139–144

    Article  Google Scholar 

  36. Cavaliere P, De Santis A, Panella F, Squillace A (2009) Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding. Mater Des 30(3):609–616

    Article  Google Scholar 

  37. Humphreys F (1977) The nucleation of recrystallization at second phase particles in deformed aluminium. Acta Met 25(11):1323–1344

    Article  CAS  Google Scholar 

  38. Deng K, Shi J, Wang C et al (2012) Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite. Composites A 43(8):1280–1284

    Article  CAS  Google Scholar 

  39. Fereiduni E, Movahedi M, Baghdadchi A (2018) Ultrahigh-strength friction stir spot welds of aluminium alloy obtained by Fe3O4 nanoparticles. Sci Technol Weld Join 23(1):63–70

    Article  CAS  Google Scholar 

  40. Gerlich A, Avramovic-Cingara G, North TH (2006) Stir zone microstructure and strain rate during Al 7075–T6 friction stir spot welding. Met Trans A 37a(9):2773–2786

    Article  CAS  Google Scholar 

  41. Liu YQ, Cong HT, Wang W et al (2009) AlN nanoparticle-reinforced nanocrystalline Al matrix composites: fabrication and mechanical properties. Mater Sci Eng A 505(1–2):151–156

    Article  Google Scholar 

  42. Sadeghi B, Shamanian M, Ashrafizadeh F et al (2017) Microstructural behaviour of spark plasma sintered composites containing bimodal micro- and nano-sized Al2O3 particles. Powder Met 61(1):50–63

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Cavaliere.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, B., Abbasi, H., Atapour, M. et al. Friction stir spot welding of TiO2 nanoparticle-reinforced interstitial free steel. J Mater Sci 55, 12458–12475 (2020). https://doi.org/10.1007/s10853-020-04838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04838-6

Navigation