Skip to main content
Log in

Effect of pre-compression on microstructural evolution, mechanical property and strengthening mechanism of AZ31 alloy

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of pre-compression deformation on the microstructural evolution, mechanical property and deformation behavior of AZ31 magnesium alloy was studied. The alloy was microstructurally characterized with a combination of optical microscopy, electron backscatter diffraction, X-ray diffraction and energy-dispersive spectrometer. The results indicate that average number of twins per grain and dislocation density increases with an increase in compressive pre-deformation level. Stress–strain curves of low pre-strained samples (0%, 1% and 3%) present concave-up features, whereas concave-down shapes are detected for high pre-strained samples (6% and 8%) in uniaxial compression tests. The corresponding underlying deformation mechanism transists from a twin-dominated mechanism to a slip-dominated mechanism. This deformation mechanism transition is related to {10–12} twinning, which leads to grain refinement and crystal orientation change, as well as increased dislocation density. The yield strength linearly increases with increasing equivalent grain size regardless of the deformation mechanisms. Quantitative analysis reveals that the contributions from texture strengthening, twinning/grain boundary strengthening and dislocation strengthening increase as pre-compression level increases. Texture strengthening is the dominant strengthening mechanism for high pre-strained samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Li Q, Jiao X (2018) Exploration of equal channel angular pressing routes for efficiently achieving ultrafine microstructure in magnesium. Mater Sci Eng A 733:179–189

    Article  CAS  Google Scholar 

  2. Li X, Zhang J, Hou D, Li Q (2018) Compressive deformation and fracture behaviors of AZ31 magnesium alloys with equiaxed grains and bimodal grains. Mater Sci Eng A 729:466–476

    Article  CAS  Google Scholar 

  3. Han B, Dunand D (2000) Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Mater Sci Eng A 277:297–304

    Article  Google Scholar 

  4. Chen H, Liu T, Lu L, He J, Zhai Y (2015) Influence of pre-strain and heat treatment on subsequent deformation behavior of extruded AZ31 Mg alloy. Trans Nonferrous Met Soc China 25(11):3604–3610

    Article  CAS  Google Scholar 

  5. Zhang H, Yang M, Hou M et al (2018) Effect of pre-existing 101̄2 extension twins on mechanical properties, microstructure evolution and dynamic recrystallization of AZ31 Mg alloy during uniaxial compression. Mater Sci Eng A 744:456–470

    Article  CAS  Google Scholar 

  6. Cepeda-Jiménez C, Molina-Aldareguia J, Pérez-Prado M (2015) Origin of the twinning to slip transition with grain size refinement, with decreasing strain rate and with increasing temperature in magnesium. Acta Mater 88:232–244

    Article  CAS  Google Scholar 

  7. Cepeda-Jiménez C, Molina-Aldareguia J, Pérez-Prado M (2015) Effect of grain size on slip activity in pure magnesium polycrystals. Acta Mater 84:443–456

    Article  CAS  Google Scholar 

  8. Mathis K, Čapek J, Clausen B, Krajňák T, Nagarajan D (2015) Investigation of the dependence of deformation mechanisms on solute content in polycrystalline Mg–Al magnesium alloys by neutron diffraction and acoustic emission. J Alloys Compd 642:185–191

    Article  CAS  Google Scholar 

  9. Vargas M, Lathabai S, Uggowitzer PJ et al (2017) Microstructure, crystallographic texture and mechanical behaviour of friction stir processed Mg-Zn-Ca-Zr alloy ZKX50. Mater Sci Eng A 685:253–264

    Article  CAS  Google Scholar 

  10. Wang L, Huang G, Quan Q, Bassani P et al (2014) The effect of twinning and detwinning on the mechanical property of AZ31 extruded magnesium alloy during strain-path changes. Mater Des 63:177–184

    Article  CAS  Google Scholar 

  11. Fan H, Aubry S, Arsenlis A, El-Awady JA (2016) Grain size effects on dislocation and twinning mediated plasticity in magnesium. Scr Mater 112:50–53

    Article  CAS  Google Scholar 

  12. Li J, Xu W, Wu X, Ding H, Xia K (2011) Effects of grain size on compressive behaviour in ultrafine grained pure Mg processed by equal channel angular pressing at room temperature. Mater Sci Eng A 528:5993–5998

    Article  CAS  Google Scholar 

  13. Figueiredo RB, Poggiali FS, Silva CL (2016) The influence of grain size and strain rate on the mechanical behavior of pure magnesium. J Mater Sci 51:3013–3024. https://doi.org/10.1007/s10853-015-9612-x

    Article  CAS  Google Scholar 

  14. Choi H, Kim Y, Shin J, Bae D (2010) Deformation behavior of magnesium in the grain size spectrum from nano-to micrometer. Mater Sci Eng A 527:1565–1570

    Article  CAS  Google Scholar 

  15. Lapovok R, Thomson P, Cottam R, Estrin Y (2005) The effect of grain refinement by warm equal channel angular extrusion on room temperature twinning in magnesium alloy ZK60. J Mater Sci 40:1699–1708. https://doi.org/10.1007/s10853-005-0672-1

    Article  CAS  Google Scholar 

  16. Chino Y, Kimura K, Mabuchi M (2008) Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy. Mater Sci Eng A 486:481–488

    Article  CAS  Google Scholar 

  17. Meyers M, Vöhringer O, Lubarda V (2001) The onset of twinning in metals: a constitutive description. Acta Mater 49:4025–4039

    Article  CAS  Google Scholar 

  18. Song B, Guo N, Liu T, Yang Q (2014) Improvement of formability and mechanical properties of magnesium alloys via pre-twinning: a review. Mater Des 62:352–360

    Article  CAS  Google Scholar 

  19. He J, Liu T, Xu S, Zhang Y (2013) The effects of compressive pre-deformation on yield asymmetry in hot-extruded Mg–3Al–1Zn alloy. Mater Sci Eng A 579:1–8

    Article  CAS  Google Scholar 

  20. Fu H, Ge B, Xin Y, Wu R, Fernandez C, Huang J et al (2017) Achieving high strength and ductility in magnesium alloys via densely hierarchical double contraction nanotwins. Nano Lett 17:6117–6124

    Article  CAS  Google Scholar 

  21. Liu Z, Xin R, Wu X, Liu D, Liu Q (2018) Improvement in the strength of friction-stir-welded ZK60 alloys via post-weld compression and aging treatment. Mater Sci Eng A 712:493–501

    Article  CAS  Google Scholar 

  22. Huo Q, Xiao Z, Yang X, Ando D et al (2017) Enhanced fatigue properties of cast AZ80 Mg alloy processed by cyclic torsion and low-temperature annealing. Mater Sci Eng A 696:52–59

    Article  CAS  Google Scholar 

  23. Song B, Xin R, Chen G, Zhang X, Liu Q (2012) Improving tensile and compressive properties of magnesium alloy plates by pre-cold rolling. Scr Mater 66:1061–1064

    Article  CAS  Google Scholar 

  24. Guo N, Song B, Guo C, Xin R, Liu Q (2015) Improving tensile and compressive properties of magnesium alloy rods via a simple pre-torsion deformation. Mater Des 83:270–275

    Article  CAS  Google Scholar 

  25. Song B, Wang C, Guo N, Pan H, Xin R (2017) Improving tensile and compressive properties of an extruded AZ91 rod by the combined use of torsion deformation and aging treatment. Material 10:280

    Article  CAS  Google Scholar 

  26. Xin Y, Wang M, Zeng Z, Nie M, Liu Q (2012) Strengthening and toughening of magnesium alloy by {10–12} extension twins. Scr Mater 66:25–28

    Article  CAS  Google Scholar 

  27. Hong S, Park S, Lee C (2010) Enhancing the fatigue property of rolled AZ31 magnesium alloy by controlling {10–12} twinning-detwinning characteristics. J Mater Res 25:784–792

    Article  CAS  Google Scholar 

  28. Park S, Hong S, Lee C (2013) Enhanced stretch formability of rolled Mg–3Al–1Zn alloy at room temperature by initial {10–12} twins. Mater Sci Eng A 578:271–276

    Article  CAS  Google Scholar 

  29. Kim S, Yim C, Lee Y, Yoon J, Lee J (2014) Controlling the microstructure of magnesium alloy sheet during rolling. Mater Sci Eng A 596:216–221

    Article  CAS  Google Scholar 

  30. Wang L, Cao M, Cheng W, Zhang H et al (2018) Improved stretch formability of AZ31 magnesium thin sheet by induced {10–12} tension twins. J Metal 70:2321–2326

    CAS  Google Scholar 

  31. Teng J, Gong X, Li Y, Nie Y (2018) Influence of aging on twin boundary strengthening in magnesium alloys. Mater Sci Eng A 715:137–143

    Article  CAS  Google Scholar 

  32. Ungar T, Ott S, Sanders P, Borbély A, Weertman J (1998) Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis. Acta Mater 46:3693–3699

    Article  CAS  Google Scholar 

  33. Ribárik G, Ungár T (2010) Characterization of the microstructure in random and textured polycrystals and single crystals by diffraction line profile analysis. Mater Sci Eng A 528:112–121

    Article  CAS  Google Scholar 

  34. Dragomir I, Ungár T (2002) Contrast factors of dislocations in the hexagonal crystal system. J Appl Crystal 35:556–564

    Article  CAS  Google Scholar 

  35. Kim S-H, Jo W-K, Hong W-H et al (2017) Microstructural evolution of extruded AZ31 alloy with bimodal structure during compression. Mater Sci Eng A 702:1–9

    Article  CAS  Google Scholar 

  36. Wang X, Jiang L, Zhang D, Beyerlein IJ et al (2018) Reversed compressive yield anisotropy in magnesium with microlaminated structure. Acta Mater 146:12–24

    Article  CAS  Google Scholar 

  37. Jiang F, Liao W (2017) Effect of pre-compression deformation on stress-strain behavior of AZ31 alloy. Foundry Technol 38:1295–1297

    Google Scholar 

  38. Barnett M, Keshavarz Z, Beer A, Atwell D (2004) Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater 52:5093–5103

    Article  CAS  Google Scholar 

  39. Lu L, Huang J, Fan D et al (2016) Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: a study with simultaneous in situ synchrotron x-ray imaging and diffraction. Acta Mater 120:86–94

    Article  CAS  Google Scholar 

  40. Ghaderi A, Barnett MR (2011) Sensitivity of deformation twinning to grain size in titanium and magnesium. Acta Mater 59:7824–7839

    Article  CAS  Google Scholar 

  41. Xie K, Alam Z, Caffee A, Hemker K (2016) Pyramidal I slip in c-axis compressed Mg single crystals. Scr Mater 112:75–78

    Article  CAS  Google Scholar 

  42. Syed B, Geng J, Mishra R, Kumar K (2012) [0 0 0 1] Compression response at room temperature of single-crystal magnesium. Scr Mater 67:700–703

    Article  CAS  Google Scholar 

  43. Byer CM, Li B, Cao B, Ramesh K (2010) Microcompression of single-crystal magnesium. Scr Mater 62:536–539

    CAS  Google Scholar 

  44. Hutchinson W, Barnett M (2010) Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other HCP metals. Scr Mater 63:737–740

    Article  CAS  Google Scholar 

  45. Kamikawa N, Huang X, Tsuji N, Hansen N (2009) Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater 57:4198–4208

    Article  CAS  Google Scholar 

  46. He S, Zeng X, Peng L et al (2017) Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5 Zr alloy. J Alloys Compds 427:316–323

    Article  CAS  Google Scholar 

  47. Lavrentev F (1980) The type of dislocation interaction as the factor determining work hardening. Mater Sci Eng A 46:191–208

    Article  CAS  Google Scholar 

  48. Armstrong R, Codd I, Douthwaite R, Petch N (1962) The plastic deformation of polycrystalline aggregates. Philos Mag 7:45–58

    Article  CAS  Google Scholar 

  49. Kim W, Lee H, Yoo S, Park Y (2011) Texture and mechanical properties of ultrafine-grained Mg–3Al–1Zn alloy sheets prepared by high-ratio differential speed rolling. Mater Sci Eng A 528:874–879

    Article  CAS  Google Scholar 

  50. Homma T, Mendis C, Hono K, Kamado S (2010) Effect of Zr addition on the mechanical properties of as-extruded Mg–Zn–Ca–Zr alloys. Mater Sci Eng A 527:2356–2362

    Article  CAS  Google Scholar 

  51. Wang R, Mao P, Liu Y, Chen Y, Wang Z, Wang F, Zhou L, Liu Z (2019) Influence of pre-twinning on high strain rate compressive behavior of AZ31 Mg-alloys. Mater Sci Eng A 742:309–317

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by US Department of Energy, Office of Basic Energy Sciences under Award No. DESC0016333. X. Li appreciates basic start-up fund of Sun-Yat Sen University (45000-18841218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qizhen Li.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, Q. Effect of pre-compression on microstructural evolution, mechanical property and strengthening mechanism of AZ31 alloy. J Mater Sci 55, 11637–11649 (2020). https://doi.org/10.1007/s10853-020-04724-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04724-1

Navigation