Skip to main content

Advertisement

Log in

Three-dimensional porous cobalt ferrite and carbon nanorod hybrid network as highly efficient electrocatalyst for oxygen evolution reaction

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is still challengeable to develop oxygen evolution reaction (OER) electrocatalyst with low cost and high efficiency to accelerate the kinetic of water splitting. Herein, a facile solvothermal method is put forward to synthesize three-dimensional porous cobalt ferrite and carbon nanorod hybrid network constructed by a network of carbon nanorods in which cobalt ferrite nanoparticles are uniformly embedded. The cobalt ferrite and carbon nanorod hybrid electrocatalyst delivers outstanding OER performance, especially a very low onset potential (1.49 V vs. RHE), a very low Tafel slope (38 mV dec−1), and to obtain a current density of 10 mA cm−2 only requires a very small potential (1.56 V), which is much better than cobalt ferrite, and comparable to RuO2. Furthermore, it also displays excellent long-term stability under 25 h of chronoamperometric testing. The reason why cobalt ferrite and carbon nanorod hybrid has such superior OER performance stems from the low oxygen coordination and solid-state redox couples of cobalt ferrite, the conductive carbon nanorod skeleton and the unique three-dimensional porous nanoarchitecture, which can not only sustain the high conductivity and structural stability of the hybrid catalyst, but also facilitate the electron/ion transfer and oxygen bubble diffusion and bare more electrochemically active surface sites. This paper proposes a new scheme for the synthesis of non-noble transition metal oxide-based OER electrocatalysts with rationally designed nanoarchitecture and high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Rezaei B, Jahromi ART, Ensafi AA (2017) Co(OH)2 nanoparticles deposited on reduced graphene oxide nanoflake as a suitable electrode material for supercapacitor and oxygen evolution reaction in alkaline media. Int J Hydrog Energy 42:16538–16546

    Article  CAS  Google Scholar 

  2. Reier T, Nong HN, Teschner D, Schlögl R, Strasser P (2017) Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts. Adv Energy Mater 7:1601275. https://doi.org/10.1002/aenm.201601275

    Article  CAS  Google Scholar 

  3. Bajdich M, García-Mota M, Vojvodic A, Nørskov JK, Bell AT (2013) Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J Am Chem Soc 135:13521–13530

    Article  CAS  Google Scholar 

  4. Lu Y, Hou W, Yang D, Chen Y (2019) CoP nanosheets in situ grown on N-doped graphene as an efficient and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Electrochim Acta 307:543–552

    Article  CAS  Google Scholar 

  5. Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim B, Durst J, Bozza F, Graule T, Schäublin R, Wiles L, Pertoso M, Danilovic N, Ayers KE, Schmidt TJ (2017) Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat Mater 16:925–931

    Article  CAS  Google Scholar 

  6. Zhu K, Zhu X, Yang W (2019) In-situ-Methoden zur Charakterisierung elektrochemischer NiFe-Sauerstoffentwicklungskatalysatoren. Angew Chem 131:1264–1277

    Article  Google Scholar 

  7. Liu H, Xia G, Zhang R, Jiang P, Chen J, Chen Q (2017) MOF-derived RuO2/Co3O4 heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions. RSC Adv 7:3686–3694

    Article  CAS  Google Scholar 

  8. Song F, Hu X (2014) Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J Am Chem Soc 136:16481–16484

    Article  CAS  Google Scholar 

  9. Zhang R, Dubouis N, Ben Osman M, Yin W, Sougrati MT, Corte DAD, Giaume D, Grimaud A (2019) A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media. Angew Chem Int Ed 58:4571–4575

    Article  CAS  Google Scholar 

  10. Cai P, Huang J, Chen J, Wen Z (2017) Oxygen-containing amorphous cobalt sulfide porous nanocubes as high-activity electrocatalysts for the oxygen evolution reaction in an alkaline/neutral medium. Angew Chem Int Ed 56:4858–4861

    Article  CAS  Google Scholar 

  11. Huang L, Jiang J, Ai L (2017) Interlayer expansion of layered cobalt hydroxide nanobelts to highly improve oxygen evolution electrocatalysis. ACS Appl Mater Inter 9:7059–7067

    Article  CAS  Google Scholar 

  12. Liu K, Zhang C, Sun Y, Zhang G, Shen X, Zou F, Zhang H, Wu Z, Wegener EC, Taubert CJ, Miller JT, Peng Z, Zhu Y (2018) High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction. ACS Nano 12:158–167

    Article  CAS  Google Scholar 

  13. Park JE, Lee H, Oh S, Kang SY, Choi I, Cho Y, Sung Y (2019) Electrodeposited mesh-type dimensionally stable anode for oxygen evolution reaction in acidic and alkaline media. Chem Eng Sci 206:424–431

    Article  CAS  Google Scholar 

  14. Tian T, Jiang J, Ai L (2017) In situ electrochemically generated composite-type CoOx/WOx in self-activated cobalt tungstate nanostructures: implication for highly enhanced electrocatalytic oxygen evolution. Electrochim Acta 224:551–560

    Article  CAS  Google Scholar 

  15. Zhang Q, Li XL, Tao BX, Wang XH, Deng YH, Gu XY, Li LJ, Xiao W, Li NB, Luo HQ (2019) CoNi based alloy/oxides@N-doped carbon core-shell dendrites as complementary water splitting electrocatalysts with significantly enhanced catalytic efficiency. Appl Catal B 254:634–646

    Article  CAS  Google Scholar 

  16. Lu X, Gu L, Wang J, Wu J, Liao P, Li G (2017) Bimetal-organic framework derived CoFe2 O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv Mater 29:1604437. https://doi.org/10.1002/adma.201604437

    Article  CAS  Google Scholar 

  17. Zhao Q, Yan Z, Chen C, Chen J (2017) Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem Rev 117:10121–10211

    Article  CAS  Google Scholar 

  18. Yang H, Liu Y, Luo S, Zhao Z, Wang X, Luo Y, Wang Z, Jin J, Ma J (2017) Lateral-size-mediated efficient oxygen evolution reaction: insights into the atomically thin quantum dot structure of NiFe2O4. ACS Catal 7:5557–5567

    Article  CAS  Google Scholar 

  19. Niu Y, Huang X, Zhao L, Hu W, Li CM (2018) One-pot synthesis of Co/CoFe2O4 nanoparticles supported on N-doped graphene for efficient bifunctional oxygen electrocatalysis. ACS Sustain Chem Eng 6:3556–3564

    Article  CAS  Google Scholar 

  20. Li M, Xiong Y, Liu X, Bo X, Zhang Y, Han C, Guo L (2015) Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale 7:8920–8930

    Article  CAS  Google Scholar 

  21. Si C, Zhang Y, Zhang C, Gao H, Ma W, Lv L, Zhang Z (2017) Mesoporous nanostructured spinel-type MFe2O4 (M = Co, Mn, Ni) oxides as efficient bi-functional electrocatalysts towards oxygen reduction and oxygen evolution. Electrochim Acta 245:829–838

    Article  CAS  Google Scholar 

  22. Liu G, Yao R, Zhao Y, Wang M, Li N, Li Y, Bo X, Li J, Zhao C (2018) Encapsulation of Ni/Fe3O4 heterostructures inside onion-like N-doped carbon nanorods enables synergistic electrocatalysis for water oxidation. Nanoscale 10:3997–4003

    Article  CAS  Google Scholar 

  23. Dou S, Dong C, Hu Z, Huang Y, Chen J, Tao L, Yan D, Chen D, Shen S, Chou S, Wang S (2017) Atomic-scale CoOx species in metal-organic frameworks for oxygen evolution reaction. Adv Funct Mater 27:1702546

    Article  Google Scholar 

  24. Qin C, Ye Z, Ma G, Li D (2018) Study on the Stability of CoxM 3-xO4 (M = Ni, Mn and Ce) nanowire array electrodes for electrochemical oxygen evolution at large current densities. J Electrochem Soc 165:A3496–A3503

    Article  CAS  Google Scholar 

  25. Pan S, Yu J, Zhang Y, Li B (2020) Pulsed laser deposited Cr-doped CoFe2O4 thin film as highly efficient oxygen evolution reaction electrode. Mater Lett 262:127027. https://doi.org/10.1016/j.matlet.2019.127027

    Article  CAS  Google Scholar 

  26. Chen D, Qiao M, Lu Y, Hao L, Liu D, Dong C, Li Y, Wang S (2018) Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction. Angew Chem Int Ed 57:8691–8696

    Article  CAS  Google Scholar 

  27. Li H, Zhou Q, Liu F, Zhang W, Tan Z, Zhou H, Huang Z, Jiao S, Kuang Y (2019) Biomimetic design of ultrathin edge-riched FeOOH@Carbon nanotubes as high-efficiency electrocatalysts for water splitting. Appl Catal B 255:117755. https://doi.org/10.1016/j.apcatb.2019.117755

    Article  CAS  Google Scholar 

  28. Zhang S, Zhai D, Sun T, Han A, Zhai Y, Cheong W, Liu Y, Su C, Wang D, Li Y (2019) In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. Appl Catal B 254:186–193

    Article  CAS  Google Scholar 

  29. Wang Z, Ang J, Zhang B, Zhang Y, Ma XYD, Yan T, Liu J, Che B, Huang Y, Lu X (2019) FeCo/FeCoNi/N-doped carbon nanotubes grafted polyhedron-derived hybrid fibers as bifunctional oxygen electrocatalysts for durable rechargeable zinc–air battery. Appl Catal B 254:26–36

    Article  CAS  Google Scholar 

  30. Wang ZG, Liu JB, Hao X (2019) Investigating the stability of molecule doped graphene field effect transistors. New J Chem 43:15275–15279

    Article  CAS  Google Scholar 

  31. Li Y, Yuan M, Liu H, Sun G (2020) In situ synthesis of CoFe2O4 nanocrystals decorated in mesoporous carbon nanofibers with enhanced electromagnetic performance. J Alloy Compd 826:154147. https://doi.org/10.1016/j.jallcom.2020.154147

    Article  CAS  Google Scholar 

  32. Maruthapandian V, Mathankumar M, Saraswathy V, Subramanian B, Muralidharan S (2017) Study of the oxygen evolution reaction catalytic behavior of Cox Ni1x Fe2O4 in alkaline medium. ACS Appl Mater Inter 9:13132–13141

    Article  CAS  Google Scholar 

  33. Yan K, Shang X, Liu Z, Dong B, Lu S, Chi J, Gao W, Chai Y, Liu C (2017) A facile method for reduced CoFe2O4 nanosheets with rich oxygen vacancies for efficient oxygen evolution reaction. Int J Hydrogen Energ 42:24150–24158

    Article  CAS  Google Scholar 

  34. Liu Y, Li J, Li F, Li W, Yang H, Zhang X, Liu Y, Ma J (2016) A facile preparation of CoFe2O4 nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction. J Mater Chem A 4:4472–4478

    Article  CAS  Google Scholar 

  35. Yu B, Yang D, Hu Y, He J, Chen Y, He W (2019) Mo2C nanodots anchored on N-doped porous CNT microspheres as electrode for efficient Li-ion storage. Small Methods 3:1800287. https://doi.org/10.1002/smtd.201800287

    Article  CAS  Google Scholar 

  36. Li T, Lv Y, Su J, Wang Y, Yang Q, Zhang Y, Zhou J, Xu L, Sun D, Tang Y (2017) Anchoring CoFe2O4 nanoparticles on N-doped carbon nanofibers for high-performance oxygen evolution reaction. Adv Sci 4:1700226. https://doi.org/10.1002/advs.201700226

    Article  CAS  Google Scholar 

  37. Zhang Z, Zhang J, Wang T, Li Z, Yang G, Bian H, Li J, Gao D (2018) Durable oxygen evolution reaction of one dimensional spinel CoFe2O4 nanofibers fabricated by electrospinning. RSC Adv 8:5338–5343

    Article  CAS  Google Scholar 

  38. Zhuang H, Xie Y, Tan H, Deng Y, Li Y, Chen G (2018) CoFex–CoFe2O4/N-doped carbon nanocomposite derived from in situ pyrolysis of a single source precursor as a superior bifunctional electrocatalyst for water splitting. Electrochim Acta 262:18–26

    Article  CAS  Google Scholar 

  39. Fang Y, Liu Z (2010) Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2 (110). J Am Chem Soc 132:18214–18222

    Article  CAS  Google Scholar 

  40. Guan BY, Yu L, Lou XWD (2017) General synthesis of multishell mixed-metal oxyphosphide particles with enhanced electrocatalytic activity in the oxygen evolution reaction. Angew Chem Int Ed 56:2386–2389

    Article  CAS  Google Scholar 

  41. Sun X, Gao L, Guo C, Zhang Y, Kuang X, Yan T, Ji L, Wei Q (2017) Sulfur incorporated CoFe2O4/multiwalled carbon nanotubes toward enhanced oxygen evolution reaction. Electrochim Acta 247:843–850

    Article  CAS  Google Scholar 

  42. McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987

    Article  CAS  Google Scholar 

  43. Brug GJ, van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interf Electrochem 176:275–295

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National High Technology Research and Development Program of China (Grant No. 2015AA034202), and National Natural Science Foundation of China (Grant Nos. 21773024, 51372033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanfu Chen or Dongxu Yang.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest with this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2020_4718_MOESM1_ESM.docx

We have added some experimental data to the Electronic Supplementary material to make the argument more convincing (DOCX 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, H., Zhang, W., Yu, B. et al. Three-dimensional porous cobalt ferrite and carbon nanorod hybrid network as highly efficient electrocatalyst for oxygen evolution reaction. J Mater Sci 55, 11489–11500 (2020). https://doi.org/10.1007/s10853-020-04718-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04718-z

Navigation