Skip to main content

Advertisement

Log in

Multicaloric effect in multiferroic EuTiO3 thin films

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A modified Landau–Ginzburg–Devonshire phenomenological thermodynamic theory is used to investigate both the influence of biaxial compressive misfit strain between film and the substrate and the mechanical stress on the multicaloric response in epitaxial EuTiO3 thin films. The complicated compressive misfit strain–temperature phase diagram in the low-temperature region is developed. The excellent electrocaloric and elastocaloric effect can be achieved: \( \Delta T(T_{\text{C}} ) = 3.66\,{\text{K}} \), while \( \Delta E = 100\,{\text{kV/cm}},u_{\text{m}} = - \,4.0{\%} \); \( \Delta T \) = 5.31 K at 200 MPa. Besides, the maximal adiabatic temperature change \( \Delta T(T_{\text{M}} ) = 17.3\,{\text{K}} \), while \( \Delta H = 5\,{\text{T}},u_{\text{m}} = - \,4.0{\%} \), in the low-temperature region, which is comparable with the experimental result. Both the misfit strain and the external mechanical stress play a crucial role in the multicaloric response in EuTiO3 films. It may open more opportunities for practical application in refrigeration devices, especially for low-temperature solid-state multicaloric cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Liu Y, Zhang G, Li Q, Bellaiche L, Scott JF, Dkhil B, Wang Q (2016) Towards multicaloric effect with ferroelectrics. Phys Rev B 94:214113

    Article  Google Scholar 

  2. Kesim MT, Zhang J, Alpay SP, Martin LW (2014) Enhanced electrocaloric and pyroelectric response from ferroelectric multilayers. Appl Phys Lett 105:052901

    Article  Google Scholar 

  3. Wu M, Zhu Q, Li J, Song D, Wu H, Guo M, Gao J, Bai Y, Feng Y, Pennycook SJ, Lou X (2019) Electrocaloric effect in ferroelectric ceramics with point defects. Appl Phys Lett 114:142901

    Article  Google Scholar 

  4. Das M, Roy S, Khan N, Mandal P (2018) Giant magnetocaloric effect in an exchange-frustrated GdCrTiO5 antiferromagnet. Phys Rev B 98:104420

    Article  CAS  Google Scholar 

  5. Cong D, Xiong W, Planes A, Ren Y, Mañosa L, Cao P, Nie Z, Sun X, Yang Z, Hong X, Wang Y (2019) Colossal elastocaloric effect in ferroelastic Ni–Mn–Ti alloys. Phys Rev Lett 122:255703

    Article  CAS  Google Scholar 

  6. Khassaf H, Patel T, Alpay SP (2017) Combined intrinsic elastocaloric and electrocaloric properties of ferroelectrics. J Appl Phys 121:144102

    Article  Google Scholar 

  7. Taulats ES, Planes A, Lloveras P, Barrio M, Tamarit JL, Pramanick S, Majumdar S, Frontera C, Mañosa L (2014) Barocaloric and magnetocaloric effects in Fe49Rh51. Phys Rev B 89:214105

    Article  Google Scholar 

  8. Castán T, Planes A, Saxena A (2012) Thermodynamics of ferrotoroidic materials: toroidocaloric effect. Phys Rev B 85:144429

    Article  Google Scholar 

  9. Moya X, Defay E, Heine V, Mathur ND (2015) Too cool to work. Nat Phys 11:202–205

    Article  CAS  Google Scholar 

  10. Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND (2006) Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311:1270–1271

    Article  CAS  Google Scholar 

  11. Hou Y, Yang L, Qian X, Zhang T, Zhang QM (2016) Enhanced electrocaloric effect in composition gradient bilayer thick films. Appl Phys Lett 108:133501

    Article  Google Scholar 

  12. Grünebohm A, Nishimatsu T (2016) Influence of defects on ferroelectric and electrocaloric properties of BaTiO3. Phys Rev B 93:134101

    Article  Google Scholar 

  13. Palacios E, Tomasi C, Puche RS, García AJDS, Martínez FF, Burriel R (2016) Effect of Gd polarization on the large magnetocaloric effect of GdCrO4 in a broad temperature range. Phys Rev B 93:064420

    Article  Google Scholar 

  14. Staunton JB, Banerjee R, Dias MDS, Deak A, Szunyogh L (2014) Fluctuating local moments, itinerant electrons, and the magnetocaloric effect: compositional hypersensitivity of FeRh. Phys Rev B 89:054427

    Article  Google Scholar 

  15. Balli M, Jandl S, Fournier P, Dimitrov DZ (2016) Giant rotating magnetocaloric effect at low magnetic fields in multiferroic TbMn2O5 single crystals. Appl Phys Lett 108:102401

    Article  Google Scholar 

  16. Vopson MM (2012) The multicaloric effect in multiferroic materials. Sold State Commun 152:2067–2070

    Article  CAS  Google Scholar 

  17. Cazorla C, Íñiguez J (2018) Giant direct and inverse electrocaloric effects in multiferroic thin films. Phys Rev B 98:174105

    Article  CAS  Google Scholar 

  18. Scagnoli V, Allieta M, Walker H, Scavini M, Katsufuji T, Sagarna L, Zaharko O, Mazzoli C (2012) EuTiO3 magnetic structure studied by neutron powder diffraction and resonant x-ray scattering. Phys Rev B 86:094432

    Article  Google Scholar 

  19. Ahadi K, Lu X, Rezaie SS, Marshall PB, Rondinelli JM, Stemmer S (2019) Anisotropic magnetoresistance in the itinerant antiferromagnetic EuTiO3. Phys Rev B 99:041106(R)

    Article  Google Scholar 

  20. Iqbal AM, Jaffari GH (2019) Effect of stoichiometry on electrical response and polydispersivity related to hopping polarization in EuTiO3. J App Phys 125:114102

    Article  Google Scholar 

  21. Bessas D, Glazyrin K, Ellis DS, Kantor I, Merkel DG, Cerantola V, Potapkin V, Smaalen SV, Baron AQR, Hermann RP (2018) Pressure-mediated structural transitions in bulk EuTiO3. Phys Rev B 98:054105

    Article  Google Scholar 

  22. Fennie CJ, Rabe KM (2006) Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys Rev Lett 97:267602

    Article  Google Scholar 

  23. Lee JH, Fang L, Vlahos E et al (2010) A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature 466:954–958

    Article  CAS  Google Scholar 

  24. Mo ZJ, Shen J, Li L, Liu Y, Tang CC, Hu FX, Sun JR, Shen BG (2015) Observation of giant magnetocaloric effect in EuTiO3. Mater Lett 158:282–284

    Article  CAS  Google Scholar 

  25. Midya A, Mandal P, Rubi K, Chen R, Wang JS, Mahendiran R, Lorusso G, Evangelisti M (2016) Large adiabatic temperature and magnetic entropy changes in EuTiO3. Phys Rev B 93:094422

    Article  Google Scholar 

  26. Rubi K, Kumar P, Repaka DVM, Chen R, Wang JS, Mahendiran R (2014) Giant magnetocaloric effect in magnetoelectric Eu1−xBaxTiO3. Appl Phys Lett 104:032407

    Article  Google Scholar 

  27. Rubi K, Midya A, Mahendiran R, Repaka DVM, Ramanujan RV (2016) Magnetocaloric properties of Eu1−xLaxTiO3 (0.01 ≤ x ≤ 0.2) for cryogenic magnetic cooling. J Appl Phys 119:243901

    Article  Google Scholar 

  28. Morozovska AN, Glinchuk MD, Eliseev EA (2007) Phase transitions induced by confinement of ferroic nanoparticles. Phys Rev B 76:014102

    Article  Google Scholar 

  29. Glinchuk MD, Eliseev EA, Morozovska AN, Blinc R (2008) Giant magnetoelectric effect induced by intrinsic surface stress in ferroic nanorods. Phys Rev B 77:024106

    Article  Google Scholar 

  30. Morozovska AN, Glinchuk MD, Behera RK, Zaulychny B, Deo CS, Eliseev EA (2011) Ferroelectricity and ferromagnetism in EuTiO3 nanowires. Phys Rev B 84:205403

    Article  Google Scholar 

  31. Liu Y, Wei J, Janolin PE, Infante IC, Kreisel J, Lou X, Dkhil B (2014) Prediction of giant elastocaloric strength and stress-mediated electrocaloric effect in BaTiO3 single crystals. Phys Rev B 90:104107

    Article  Google Scholar 

  32. Dai X, Cao HX, Jiang Q, Lo VC (2009) Influence of thermal strains on the electrocaloric and dielectric properties of ferroelectric nanoshells. J Appl Phys 106:034103

    Article  Google Scholar 

  33. Morozovska AN, Eliseev EA, Glinchuk MD et al (2019) Analytical description of the size effect on pyroelectric and electrocaloric properties of ferroelectric nanoparticles. Phys Rev Mater 3:104414

    Article  CAS  Google Scholar 

  34. Holder AB, Köhler J, Kremer RK, Law JM (2011) Relation between structural instabilities in EuTiO3 and SrTiO3. Phys Rev B 83:212102

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under the Grant No. 11104194, and the scholarship of Jiangsu overseas research and training program for university prominent young and middle-aged teachers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Xia Cao.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YQ., Cao, HX. Multicaloric effect in multiferroic EuTiO3 thin films. J Mater Sci 55, 5705–5714 (2020). https://doi.org/10.1007/s10853-020-04407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04407-x

Navigation