Skip to main content

Advertisement

Log in

Preparation and characterization of hematite nanoparticles-decorated zinc oxide particles (ZnO/Fe2O3) as photoelectrodes for solar cell applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Because of the socio-environmental and economic impacts of the use of fossil fuels, the demand for the diversification of the energy matrix has increased. Energy devices utilizing renewable energy such as solar cells stand out as a possible solution to this problem. Therefore, in order to realize the practical applications of solar cells, it is imperative to develop novel structural materials and to optimize the properties of the existing ones. In this study, we prepared a photoelectrode using hematite-decorated zinc oxide particles (ZnO/Fe2O3). The field-emission scanning electron microscopy and Brunauer–Emmett–Teller results confirmed that Fe2O3 coated the surface of the ZnO particles and improved their photoelectrochemical properties. The composite was found to be a promising photoelectrode for solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337

    CAS  Google Scholar 

  2. Pearce JM (2002) Photovoltaics—a path to sustainable futures. Futures 34:663–674

    Google Scholar 

  3. Modi A, Bühler F, Andreasen JG, Haglind F (2017) A review of solar energy based heat and power generation systems. Renew Sustain Energy Rev 67:1047–1064

    Google Scholar 

  4. Mekhilef S, Saidur R, Safari A (2011) A review on solar energy use in industries. Renew Sustain Energy Rev 5:1777–1790

    Google Scholar 

  5. Lof GOG (1960) Profits in Solar Energy. Solar. Energy 4:9–15

    Google Scholar 

  6. Koroneos C, Spachos T, Moussiopoulos N (2003) Exergy analysis of renewable energy sources. Renew Energy 28:295–310

    CAS  Google Scholar 

  7. Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72:126501

    Google Scholar 

  8. Marimuthu T, Anandhan N, Thangamuthu R, Surya S (2017) Facile growth of ZnO nanowire arrays and nanoneedle arrays with flower structure on ZnO–TiO2 seed layer for DSSC applications. J Alloys Comp 693:011–1019

    Google Scholar 

  9. Klingshirn CF (2007) ZnO: material, physics and applications. Chem Phys Chem 8:782–803

    CAS  Google Scholar 

  10. Chava RK, Kang M (2017) Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. J Alloys Comp 692:67–76

    CAS  Google Scholar 

  11. Çakar S, Özacar M (2016) Fe-tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs. Spectrochim A 163:79–88

    Google Scholar 

  12. Shinde PS, Geun HO, Won JL (2012) Facile growth of hierarchical hematite (α-Fe2O3) nanopetals on FTO by pulse reverse electrodeposition for photoelectrochemical water splitting. Mater Chem 22:0469–10471

    Google Scholar 

  13. Sivula K, Zboril R, Formal FL, Robert R, Weidenkaff A, Tucek J, Frydrych J, Gratzel M (2010) Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J Am Chem Soc 132:7436–7444

    CAS  Google Scholar 

  14. Wang G, Ling Y, Damon A, Kyle ENG, Kimberly H, Clemens H, Zhang JZ, Li Y (2011) Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett 11:2119–2125

    Google Scholar 

  15. Huicheng L, Dongfang N, Deying L, Wenjiao H, Xinsheng Z (2017) Understanding the enhanced photoelectrochemical activity of Ta doped hematite. J Mol Struct 1139:104–110

    Google Scholar 

  16. Phuan YW, Ibrahim E, Chong MN, Zhua T, Lee BK, Ocon JD, Chan ES (2017) In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode. Appl Surf Sci 392:144–152

    CAS  Google Scholar 

  17. Arora P, Singh AP, Mehta BR, Basu S, Vacuum (2017) Metal doped tubular carbon nitride (tC3N4) based hematite photoanode for enhanced photoelectrochemical performance. Vaccum 146:570–577

    CAS  Google Scholar 

  18. Linsen L, Yanghai Y, Fei M, Yizheng T, Robert JH, Song J (2012) Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application. Nano Lett 12:724–731

    Google Scholar 

  19. Dias P, Andrade L, Mendes A (2017) Hematite-based photoelectrode for solar water splitting with very high photovoltage. Nano Energy 38:218–231

    CAS  Google Scholar 

  20. Ikram A, Sahai A, Rai S, Dass S, Shrivastav R, Satsangi VR (2015) Enhanced photoelectrochemical conversion performance of ZnO quantum dots sensitized a-Fe2O3 thin films. J Hydrog Energy 40:5583–5592

    CAS  Google Scholar 

  21. Ji SI, Sung KL, Young-Seak L (2011) Cocktail effect of Fe2O3 and TiO2 semiconductors for a high performance dye-sensitized solar cell. Appl Surf Sci 257:2164–2169

    Google Scholar 

  22. Gou X, Wang G, Park J, Liu H, Yang J (2008) Monodisperse hematite porous nanospheres: synthesis, characterization, and applications for gas sensors. Nanotechnology 19:125606–1256013

    Google Scholar 

  23. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    CAS  Google Scholar 

  24. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by Powders & Solids, Academic Press

  25. Motaung DE, Makgwane PR, Ray SS (2015) Metal oxide nanostructures containing organic polymer hybrid solar cells: optimization of processing parameters on cell performance. Appl Surf Sci 355:484–494

    CAS  Google Scholar 

  26. Mishra YK, Modi G, Cretu V, Postica V, Lupan O, Reimer T, Paulowicz I, Hrkac V, Benecke W, Kienle L, Adelung R (2015) Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection and gas sensing. ACS Appl Mater Interfaces 7:14303–14316

    CAS  Google Scholar 

  27. Kicir N, Tüken T, Erken O, Gumus C, Ufuktepe Y (2016) Nanostructured ZnO films in forms of rod, plate and flower: electrodeposition mechanisms and characterization. Appl Surf Sci 377:191–199

    CAS  Google Scholar 

  28. Smith RDL, Prévot MS, Fagan RD, Zhang Z, Sedach PA, Siu MKJ, Trudel S, Berlinguette CP (2013) Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Am Assoc Adv Sci 340:60–63

    CAS  Google Scholar 

  29. David B, Pizúrová N, Synek P, Kudrle V, Jašek O, Schneeweiss O (2014) ε-Fe2O3 nanoparticles synthesized in atmospheric-pressure microwave torch. Mater Lett 116:370–373

    CAS  Google Scholar 

  30. Justus JS, Roy SDD, Raj AME (2016) Synthesis and characterization of hematite nanopowders. Mater Res Express 3:105037–1050315

    Google Scholar 

  31. Mohammadikish M (2014) Hydrothermal synthesis, characterization and optical properties of ellipsoid shape α-Fe2O3 nanocrystal. Ceram Int 40:1351–1358

    CAS  Google Scholar 

  32. Wang F, Qin XF, Meng YF, Guo ZL, Yang LX, Ming YF (2013) Hydrothermal synthesis and characterization of α-Fe2O3 nanoparticles. Mat Sci Semicon Proc 16:802–806

    CAS  Google Scholar 

  33. Montenegro DN, Hortelano V, Martínez O, Martínez-Tomas MC, Sallet V, Munoz-Sanjosé V, Jimenez J (2013) Non-radiative recombination centres in catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition. J Phys D Appl Phys 46:235302–235305

    Google Scholar 

  34. Calleja JM, Cardona M (1977) Resonant Raman scattering in ZnO. Phys Rev B 16:3753–3761

    CAS  Google Scholar 

  35. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301

    Google Scholar 

  36. Zhang R, Yin PG, Wang N, Guo L (2009) Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci 11:865–869

    Google Scholar 

  37. Sann J, Stehr J, Hofstaetter A, Hoffmann DM, Neumann A, Lerch M, Haboek U, Hoffmann A, Thomsen C (2007) Zn interstitial related donors in ammonia-treated ZnO powders. Phys Rev B 76:195203–195208

    Google Scholar 

  38. Shim SH, Duffy TS (2002) Raman spectroscopy of Fe2O3 to 62 GPa. Am Mineral 87:318–326

    CAS  Google Scholar 

  39. Li J, Zhang H, Wang W, Qian Y, Li Z (2016) Improved performance of dye-sensitized solar cell based on TiO2 photoanode with FTO glass and film both treated by TiCl4. Phys B 500:48–52

    CAS  Google Scholar 

  40. Wang P, Zhang X, Gao S, Cheng X, Sui L, Xu Y, Zhao X, Zhao H, Huo L (2017) Superior acetone sensor based on single-crystalline α-Fe2O3 mesoporous nanospheres via [C12mim][BF4]-assistant synthesis. Sens Actuators B Chem 241:967–977

    CAS  Google Scholar 

  41. Kubelka P, Munk F (1931) An article on optics of paint layers. Fuer Tekn Physik 12:593–609

    Google Scholar 

  42. Yi S, Zhao F, Yue X, Wang D, Lin Y (2015) Enhanced solar light-driven photocatalytic activity of BiOBr–ZnO heterojunctions with effective separation and transfer properties of photo-generated chargers. New J Chem 39:6659–6666

    CAS  Google Scholar 

  43. Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC (2015) Visible light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C 25:1–29

    CAS  Google Scholar 

  44. Mamba G, Mishra A (2016) Advances in magnetically separable photocatalysts: smart, recyclable materials for water pollution mitigation. Catalysts 6:79–113

    Google Scholar 

  45. Lachheb H, Ajala F, Hamrouni A, Houas A, Parrino F, Palmisano L (2017) Electron transfer in ZnO–Fe2O3 aqueous slurry systems and its effects on visible light photocatalytic activity. Catal Sci Technol 7:4041–4047

    CAS  Google Scholar 

  46. Studenikin SA, Golego N, Cocivera M, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J Appl Phys 84:2287-2294

    CAS  Google Scholar 

  47. Heo YW, Norton DP, Pearton SJ (2005) Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy. J Appl Phys 98:073502–073508

    Google Scholar 

  48. Usui H (2007) Influence of surfactant micells on morphology and photoluminescence of zinc oxide nanorods prepared by one-step chemical synthesis in aqueous solution. J Phys Chem C 111:9060–9065

    CAS  Google Scholar 

  49. Roy N, Roy A (2015) Growth and temperature dependent photoluminescence characteristics of ZnO tetrapods. Ceram Intl 41:4154–4160

    CAS  Google Scholar 

  50. Chettah H, Abdi D (2013) Effect of the electrochemical technique on nanocrystalline ZnO electrodeposition, its structural, morphological and photoelectrochemical properties. Thin Solid Films 537:119–123

    CAS  Google Scholar 

  51. Bousslama W, Elhouichet H, Férid M (2017) Enhanced photocatalytic activity of Fe doped ZnO nanocrystals under sun light irradiation. Optik 134:88–98

    CAS  Google Scholar 

  52. Sivula K, LeFormal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chem Sus Chem 4:432–449

    CAS  Google Scholar 

  53. da Trindade LG, Zanchet L, Trench AB, Souza JC, Carvalho MH, de Oliveira AJA, Pereira EC, Mazzo TM, Longo E (2018) Flower-like ZnO/ionic liquid composites: structure, morphology, and photocatalytic activity. Ionics 25:1–14

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by the São Paulo Research Foundation - FAPESP (2013/07296-2), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Martelli Mazzo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Trindade, L.G., Hata, G.Y., Souza, J.C. et al. Preparation and characterization of hematite nanoparticles-decorated zinc oxide particles (ZnO/Fe2O3) as photoelectrodes for solar cell applications. J Mater Sci 55, 2923–2936 (2020). https://doi.org/10.1007/s10853-019-04135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04135-x

Navigation