Skip to main content
Log in

Electrowetting behaviour of thermostable liquid over wide temperature range

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Outdoor electrowetting (EW)-based applications need consistent wetting response in the temperatures ranging from − 40 to 70 °C. Aqueous ethylene glycol is commonly used as thermostable liquid; nevertheless, its EW behaviour over a wide range of temperature is less known. We examine this behaviour for both ac and dc voltages over the temperature range from − 25 to 65 °C. The self-consistent EW responses, i.e. cosine of contact angle versus voltage square, are analysed to illustrate the EW behaviour. There is a systematic increase in EW response with temperature confirmed from the linear dependence of interfacial tension on temperature. Our result corroborates Eötvös phenomenological relation. We suggest the need of correction voltage with changing temperature to maintain uniform EW response over this temperature range. Further with decreasing temperature, the solution viscosity increases more rapidly than the increase in interfacial tension value, and thus the capillary number \( (Ca = \mu v/\gamma ) \) gets partially regulated. This is seen as a marginal variation in the switching time of the EW contact angle during the OFF voltage state to ON state and vice versa. Finally, the working of a prototype liquid lens at − 25 °C, the lowest operating temperature, is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys-Condens Matter 17:R705–R774

    Article  CAS  Google Scholar 

  2. Jones TB (2005) An electromechanical interpretation of electrowetting. J Micromech Microeng 15:1184–1187

    Article  Google Scholar 

  3. Haller B, Gopfrich K, Schroter M, Janiesch JW, Platzman I, Spatz JP (2018) Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems. Lab Chip 18:2665–2674

    Article  CAS  Google Scholar 

  4. de Ruiter R, Pit AM, de Oliveira VM, Duits MHG, van den Ende D, Mugele F (2014) Electrostatic potential wells for on-demand drop manipulation in microchannels. Lab Chip 14:883–891

    Article  Google Scholar 

  5. Guan Y, Li BY, Zhu MN, Cheng SJ, Tu JY (2019) Deformation, speed, and stability of droplet motion in closed electrowetting-based digital microfluidics. Phys Fluids 31:062002

    Article  Google Scholar 

  6. Pit AM, Duits MHG, Mugele F (2015) Droplet manipulations in two phase flow microfluidics. Micromach Basel 6:1768–1793

    Article  Google Scholar 

  7. Kim DY, Steckl AJ (2007) Liquid-state field-effect transistors using electrowetting. Appl Phys Lett 90:043507

    Article  Google Scholar 

  8. Latip ENA, Coudron L, McDonnell MB, Johnston ID, McCluskey DK, Day R, Tracey MC (2017) Protein droplet actuation on superhydrophobic surfaces: a new approach toward anti-biofouling electrowetting systems. Rsc Adv 7:49633–49648

    Article  Google Scholar 

  9. Banpurkar AG, Nichols KP, Mugele F (2008) Electrowetting-based microdrop tensiometer. Langmuir 24:10549–10551

    Article  CAS  Google Scholar 

  10. Hsu TH, Taylor JA, Krupenkin TN (2017) Energy harvesting from aperiodic low-frequency motion using reverse electrowetting. Faraday Discuss 199:377–392

    Article  CAS  Google Scholar 

  11. Dey R, Gilbers J, Baratian D, Hoek H, van den Ende D, Mugele F (2018) Controlling shedding characteristics of condensate drops using electrowetting. Appl Phys Lett 113:243703

    Article  Google Scholar 

  12. Mishra K, Murade C, Carreel B, Roghair I, Oh JM, Manukyan G, van den Ende D, Mugele F (2014) Optofluidic lens with tunable focal length and asphericity. Sci Rep UK 4:6378

    Article  CAS  Google Scholar 

  13. Berge B, Peseux J (2000) Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E 3:159–163

    Article  CAS  Google Scholar 

  14. Hendriks BHW, Kuiper S, Van As MAJ, Renders CA, Tukker TW (2005) Electrowetting-based variable-focus lens for miniature systems. Opt Rev 12:255–259

    Article  Google Scholar 

  15. Murade CU, van der Ende D, Mugele F (2012) High speed adaptive liquid microlens array. Opt Express 20:18180–18187

    Article  CAS  Google Scholar 

  16. Zohrabi M, Lim WY, Cormack RH, Supekar OD, Bright VM, Gopinath JT (2019) Lidar system with nonmechanical electrowetting-based wide-angle beam steering. Opt Express 27:4404–4415

    Article  CAS  Google Scholar 

  17. Heikenfeld J, Zhou K, Kreit E, Raj B, Yang S, Sun B, Milarcik A, Clapp L, Schwartz R (2009) Electrofluidic displays using Young–Laplace transposition of brilliant pigment dispersions. Nat Photonics 3:292–296

    Article  CAS  Google Scholar 

  18. Luo ZJ, Luo JK, Zhao WW, Cao Y, Lin WJ, Zhou GF (2018) A high-resolution and intelligent dead pixel detection scheme for an electrowetting display screen. Opt Rev 25:18–26

    Article  CAS  Google Scholar 

  19. Roques-Carmes T, Hayes RA, Feenstra BJ, Schlangen LJM (2004) Liquid behavior inside a reflective display pixel based on electrowetting. J Appl Phys 95:4389–4396

    Article  CAS  Google Scholar 

  20. Wu H, Haye RA, Li FH, Henzen A, Shui LL, Zhou GF (2018) Influence of fluoropolymer surface wettability on electrowetting display performance. Displays 53:47–53

    Article  CAS  Google Scholar 

  21. Zhou R, Ye QL, Li H, Jiang HW, Tang B, Zhou GF (2019) Experimental study on the reliability of water/fluoropolymer/ITO contact in electrowetting displays. Results Phys 12:1991–1998

    Article  Google Scholar 

  22. Li L, Wang D, Liu C, Wang QH (2016) Zoom microscope objective using electrowetting lenses. Opt Express 24:2931–2940

    Article  CAS  Google Scholar 

  23. Hu XD, Zhang SG, Lu XJ, Qu C, Lu LJ, MaXY Zhang XP, Deng YQ (2012) On the performance of thermostable electrowetting agents. Surf Interface Anal 44:478–483

    Article  CAS  Google Scholar 

  24. Ober MS, Dermody D, Maillard M, Amiot F, Malet G, Burger B, Woelfle-Gupta C, Berge B (2018) Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference. Acs Comb Sci 20:554–566

    Article  CAS  Google Scholar 

  25. Eötvös L (1886) Ueber den Zusammenhang der Oberflächenspannung der Flüssigkeiten mit ihrem Molecularvolumen. Ann Phys 263:448–459

    Article  Google Scholar 

  26. Liu CX, Park J, Choi JW (2018) A planar lens based on the electrowetting of two immiscible liquids. J Micromech Microeng 18:035023

    Article  Google Scholar 

  27. Banpurkar AG, Sawane Y, Wadhai SM, Murade CU, Siretanu I, van den Ende D, Mugele F (2017) Spontaneous electrification of fluoropolymer–water interfaces probed by electrowetting. Faraday Discuss 199:29–47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AGB gratefully acknowledge financial support under the research Grant EMR/2016/007060, from the Science and Engineering Research Board (SERB), Govt. of India. SMW would like to acknowledge CSIR, Govt. of India, for senior research fellowship (SRF) fellowship 09/137(0578/2018-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun G. Banpurkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2019_4120_MOESM1_ESM.docx

See the supplementary material for variation in viscosity of the aqueous-EG solution as a function of ambient temperature (ES1) and the prototype of a liquid lens (ES2). (DOCX 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadhai, S.M., Sawane, Y.B. & Banpurkar, A.G. Electrowetting behaviour of thermostable liquid over wide temperature range. J Mater Sci 55, 2365–2371 (2020). https://doi.org/10.1007/s10853-019-04120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04120-4

Navigation