Skip to main content
Log in

Improvement in alkali metal resistance of commercial V2O5–WO3/TiO2 SCR catalysts modified by Ce and Cu

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Commercial V2O5–WO3/TiO2 (abbreviated to VWTi) SCR catalysts are modified with Ce and different contents of Cu in wet impregnation method to improve their alkali metals resistance, which is beneficial for prolonging their service life. After K poisoning, NOx conversion of VWCeCuTi sample modified with 0.30% Ce and 0.05% Cu is 89% at 350 °C, which is obviously higher than that of VWTi with a 50% NOx conversion. A series of characterization tests were conducted and verified that the ratio of V5+ and the surface-active oxygen on VWCeCuTi sample increases due to the interaction between V, Ce and Cu. Additionally, with the addition of Ce and Cu, surface acid sites are increased and their stability is strengthened. The enhanced redox property and surface acidity contribute together to the excellent K resistance of VWCeCuTi catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Scheme 1

Similar content being viewed by others

References

  1. Radojevic M (1998) Reduction of nitrogen oxides in flue gases. Environ Pollut 102:685–689

    Article  CAS  Google Scholar 

  2. Han LP, Gao M, Feng C, Shi LY, Zhang DS (2019) Nanoarrays on Al-Mesh as SO2-Tolerant Monolith Catalysts for NO, Reduction by NH3. Environ Sci Technol 53(10):5946–5956

    Article  CAS  Google Scholar 

  3. Wang XX, Shi Y, Li SJ, Li W (2018) Promotional synergistic effect of Cu and Nb doping on a novel Cu/Ti-Nb ternary oxide catalyst for the selective catalytic reduction of NOx with NH3. Appl Catal B Environ 220:234–250

    Article  CAS  Google Scholar 

  4. Busca G, Lietti L, Ramis G, Berti F (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl Catal B Environ 18(1–2):1–36

    Article  CAS  Google Scholar 

  5. Kang L, Han LP, He JB, Li HR, Yan TT, Chen GR, Zhang JP, Shi LY, Zhang DS (2019) Improved NOx reduction in the presence of SO2 by using Fe2O3-promoted halloysite-supported CeO2–WO3 catalysts. Environ Sci Technol 53(2):938–945

    Article  CAS  Google Scholar 

  6. Yan LJ, Gu YD, Han LP, Wang PL, Li HR, Yan TT, Kuboon S, Shi LY, Zhang DS (2019) Dual promotional effects of TiO2-decorated acid-treated MnOx octahedral molecular sieve catalysts for alkali-resistant reduction of NOx. ACS Appl Mater Interfaces 11(12):11507–11517

    Article  CAS  Google Scholar 

  7. Zhu BZ, Fang QL, Sun YL, Yin SL, Li GB, Zi ZH, Ge TT, Zhu ZC, Zhang MX, Li JX (2018) Adsorption properties of NO, NH3, and O2 over β-MnO2 (110) surface. J Mater Sci 53(16):11500–11511. https://doi.org/10.1007/s10853-018-2437-7

    Article  CAS  Google Scholar 

  8. Zha KW, Kang L, Feng C, Han LP, Li HR, Yan TR, Maitarad P, Shi LY, Zhang DS (2018) Improved NOx reduction in the presence of alkali metals by using hollandite Mn-Ti oxide promoted Cu-SAPO-34 catalysts. Environ Sci Nano 5(6):1408–1419

    Article  CAS  Google Scholar 

  9. Wang XX, Cong QL, Chen L, Shi Y, Shi Y, Li SJ, Li W (2019) The alkali resistance of CuNbTi catalyst for selective reduction of NO by NH3: a comparative investigation with VWTi catalyst. Appl Catal B Environ 246:166–179

    Article  CAS  Google Scholar 

  10. Han LP, Gao M, Hasegawa J-y, Li SG, Shen YJ, Li HR, Shi LY, Zhang DS (2019) SO2-tolerant selective catalytic reduction of NOx over Meso-TiO2@Fe2O3@Al2O3 metal-based monolith catalysts. Environ Sci Technol 53(11):6462–6473

    Article  CAS  Google Scholar 

  11. Wang PL, Chen S, Gao S, Zhang JY, Wang HQ, Wu ZB (2018) Niobium oxide confined by ceria nanotubes as a novel SCR catalyst with excellent resistance to potassium, phosphorus, and lead. Appl Catal B Environ 231:299–309

    Article  CAS  Google Scholar 

  12. Alemany LJ, Lietti L, Ferlazzo N, Forzatti P, Busca G, Giamello E, Bregani F (1995) Reactivity and physicochemical characterization of V2O5–WO3/TiO2 De-NOx catalysts. J Catal 155(1):117–130

    Article  CAS  Google Scholar 

  13. Lietti L, Ramis G, Berti F, Toledo G, Robba D, Busca G, Forzatti P (1998) Chemical, structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts. Catal Today 42(1–2):101–116

    Article  CAS  Google Scholar 

  14. Chen L, Li J, Ge M (2011) The poisoning effect of alkali metals doping over nano V2O5–WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chem Eng J 170(2–3):531–537

    Article  CAS  Google Scholar 

  15. Zheng Y, Jensen AD, Johnsson JE, Thogersen JR (2008) Deactivation of V(2)O(5)-WO(3)-TiO(2) SCR catalyst at biomass fired power plants: elucidation of mechanisms by lab- and pilot-scale experiments. Appl Catal B Environ 83(3–4):186–194

    Article  CAS  Google Scholar 

  16. Peng Y, Li JH, Shi WB, Xu JY, Hao JM (2012) Design strategies for development of SCR catalyst: improvement of alkali poisoning resistance and novel regeneration method. Environ Sci Technol 46(22):12623–12629

    Article  CAS  Google Scholar 

  17. Liu ZM, Zhang SX, Li JH, Zhu JZ, Ma LL (2014) Novel V2O5–CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3. Appl Catal B Environ 158:11–19

    Article  Google Scholar 

  18. Hu WS, Zhang YH, Liu SJ, Zheng CH, Gao X, Nova I, Tronconi E (2017) Improvement in activity and alkali resistance of a novel V-Ce(SO4)(2)/Ti catalyst for selective catalytic reduction of NO with NH3. Appl Catal B Environ 206:449–460

    Article  CAS  Google Scholar 

  19. Zhang S, Liu SJ, Hu WS, Zhu XB, Qu RY, Wu WH, Zheng CH, Gao X (2019) New insight into alkali resistance and low temperature activation on vanadia-titania catalysts for selective catalytic reduction of NO. Appl Surf Sci 466:99–109

    Article  CAS  Google Scholar 

  20. Putluru SSR, Schill L, Godiksen A, Poreddy R, Mossin S, Jensen AD, Fehrmann R (2016) Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B Environ 183:282–290

    Article  CAS  Google Scholar 

  21. Chen L, Li J, Ge M (2009) Promotional effect of Ce-doped V2O5–WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3. J Phys Chem C 113(50):21177–21184

    Article  CAS  Google Scholar 

  22. Chen M, Zhao M, Tang F, Ruan L, Yang H, Li N (2017) Effect of Ce doping into V2O5–WO3/TiO2 catalysts on the selective catalytic reduction of NOx by NH3. J Rare Earths 35(12):1206–1215

    Article  CAS  Google Scholar 

  23. Konsolakis M (2016) The role of Copper-Ceria interactions in catalysis science: recent theoretical and experimental advances. Appl Catal B Environ 198:49–66

    Article  CAS  Google Scholar 

  24. Ali S, Chen L, Yuan F, Li R, Zhang T, Bakhtiar SuH, Leng X, Niu X, Zhu Y (2017) Synergistic effect between copper and cerium on the performance of Cu-x-Ce0.5-x-Zr-0.5 (x = 0.1–0.5) oxides catalysts for selective catalytic reduction of NO with ammonia. Appl Catal B Environ 210:223–234

    Article  CAS  Google Scholar 

  25. Li LL, Zhang L, Ma KL, Zou WX, Cao Y, Xiong Y, Tang CJ, Dong L (2017) Ultra-low loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3. Appl Catal B Environ 207:366–375

    Article  CAS  Google Scholar 

  26. Tang F, Xu B, Shi H, Qiu J, Fan Y (2010) The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3. Appl Catal B Environ 94(1–2):71–76

    Article  CAS  Google Scholar 

  27. Kustov AL, Rasmussen SB, Fehrmann R, Simonsen P (2007) Activity and deactivation of sulphated TiO2- and ZrO2-based V, Cu, and Fe oxide catalysts for NO abatement in alkali containing flue gases. Appl Catal B Environ 76(1–2):9–14

    Article  CAS  Google Scholar 

  28. Gao S, Wang PL, Yu FX, Wang HQ, Wu ZB (2016) Dual resistance to alkali metals and SO2: vanadium and cerium supported on sulfated zirconia as an efficient catalyst for NH3-SCR. Catal Sci Technol 6(22):8148–8156

    Article  CAS  Google Scholar 

  29. Nova I, Lietti L, Tronconi E, Forzatti P (2000) Dynamics of SCR reaction over a TiO2-supported vanadia-tungsta commercial catalyst. Catal Today 60(1–2):73–82

    Article  CAS  Google Scholar 

  30. Chang HZ, Chen XY, Li JH, Ma L, Wang CZ, Liu CX, Schwank JW, Hao JM (2013) Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for NH3-SCR at low temperatures. Environ Sci Technol 47(10):5294–5301

    Article  CAS  Google Scholar 

  31. Chen LX, Agrawal V, Tait SL (2019) Sulfate promotion of selective catalytic reduction of nitric oxide by ammonia on ceria. Catal Sci Technol 9(8):1802–1815

    Article  CAS  Google Scholar 

  32. Haber J (2009) Fifty years of my romance with vanadium oxide catalysts. Catal Today 142(3–4):100–113

    Article  CAS  Google Scholar 

  33. Ye D, Qu RY, Zheng CH, Cen KF, Gao X (2018) Mechanistic investigation of enhanced reactivity of NH4HSO4 and NO on Nb- and Sb-doped VW/Ti SCR catalysts. Appl Catal A Gen 549:310–319

    Article  CAS  Google Scholar 

  34. Cousin R, Abi-Aad E, Capelle S, Courcot D, Lamonier J-F, Aboukaïs A (2007) Physico-chemical study of impregnated Cu and V species on CeO2 support by thermal analysis, XRD, EPR, 51 V-MAS-NMR and XPS. J Mater Sci 42(15):6188–6196. https://doi.org/10.1007/s10853-006-1165-6

    Article  CAS  Google Scholar 

  35. Kong M, Liu QC, Zhou J, Jiang LJ, Tian YM, Yang J, Ren S, Li JL (2018) Effect of different potassium species on the deactivation of V2O5–WO3/TiO2 SCR catalyst: comparison of K2SO4, KCl and K2O. Chem Eng J 348:637–643

    Article  CAS  Google Scholar 

  36. Kong M, Liu QC, Jiang LJ, Tong W, Yang J, Ren S, Li JL, Tian YM (2019) K + deactivation of V2O5–WO3/TiO2 catalyst during selective catalytic reduction of NO with NH3: effect of vanadium content. Chem Eng J 370:518–526

    Article  CAS  Google Scholar 

  37. Romeo M, Bak K, El Fallah E, Le Normand F, Hilaire L (1993) XPS study of the reduction of cerium dioxide. Surf Interface Anal 20:508–512

    Article  CAS  Google Scholar 

  38. Beche E, Charvin P, Perarnau D, Abanades S, Flamant G (2008) Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf Interface Anal 40(3–4):264–267

    Article  CAS  Google Scholar 

  39. Gao X, Jiang Y, Zhong Y, Luo Z, Cen K (2010) The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3. J Hazard Mater 174(1–3):734–739

    Article  CAS  Google Scholar 

  40. Chi GL, Shen BX, Yu RR, He C, Zhang X (2017) Simultaneous removal of NO and Hg0 over Ce–Cu modified V2O5/TiO2 based commercial SCR catalysts. J Hazard Mater 330:83–92

    Article  CAS  Google Scholar 

  41. Wang HY, Wang BD, Sun Q, Li YL, Xu WQ, Li JH (2017) New insights into the promotional effects of Cu and Fe over V2O5–WO3/TiO2 NH3-SCR catalysts towards oxidation of Hg0. Catal Commun 100:169–172

    Article  Google Scholar 

  42. Du X, Gao X, Qu R, Ji P, Luo Z, Cen K-f (2012) The influence of alkali metals on the Ce-Ti mixed oxide catalyst for the selective catalytic reduction of NOx. Chemcatchem 4(12):2075–2081

    Article  CAS  Google Scholar 

  43. Hu WS, Gao X, Deng YW, Qu RY, Zheng CH, Zhu XB, Cen KF (2016) Deactivation mechanism of arsenic and resistance effect of SO4 2− on commercial catalysts for selective catalytic reduction of NOx with NH3. Chem Eng J 293:118–128

    Article  CAS  Google Scholar 

  44. Zhang BL, Liebau M, Liu B, Li L, Zhang SG, Gläser R (2019) Selective catalytic reduction of NOx with NH3 over Mn–Zr–Ti mixed oxide catalysts. J Mater Sci 54(9):6943–6960. https://doi.org/10.1007/s10853-019-03369-z

    Article  CAS  Google Scholar 

  45. Li GB, Zhu BZ, Sun YL, Yin SL, Zi ZH, Fang QL, Ge TT, Li JX (2018) Study of the alkali metal poisoning resistance of a Co-modified Mn/Ni foam catalyst in low-temperature flue gas SCR DeNOx. J Mater Sci 53(13):9674–9689. https://doi.org/10.1007/s10853-018-2234-3

    Article  CAS  Google Scholar 

  46. Francisco MSP, Mastelaro VR (2001) Activity and characterization by XPS, HR-TEM, Raman Spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts. J Phys Chem B 105:10515–10522

    Article  CAS  Google Scholar 

  47. Wang EJ, Yang WS, Cao YA (2009) Unique surface chemical species on indium doped TiO2 and their effect on the visible light photocatalytic activity. J Phys Chem C 113:20912–20917

    Article  CAS  Google Scholar 

  48. Putluru SSR, Schill L, Gardini D, Mossin S, Wagner JB, Jensen AD, Fehrmann R (2014) Superior DeNOx activity of V2O5–WO3/TiO2 catalysts prepared by deposition–precipitation method. J Mater Sci 49(7):2705–2713. https://doi.org/10.1007/s10853-013-7926-0

    Article  CAS  Google Scholar 

  49. Yu YK, Miao JF, He C, Chen JS, Li C, Douthwaite M (2018) The remarkable promotional effect of SO2 on Pb-poisoned V2O5–WO3/TiO2 catalysts: an in-depth experimental and theoretical study. Chem Eng J 338:191–201

    Article  CAS  Google Scholar 

  50. Li X, Li X, Li J, Hao J (2017) High calcium resistance of CeO2-WO3 SCR catalysts: structure investigation and deactivation analysis. Chem Eng J 317:70–79

    Article  CAS  Google Scholar 

  51. Peng Y, Wang C, Li J (2014) Structure-activity relationship of VOx/CeO2 nanorod for NO removal with ammonia. Appl Catal B Environ 144:538–546

    Article  CAS  Google Scholar 

  52. Wang SX, Guo RT, Pan WG, Chen QL, Sun P, Li MY, Liu SM (2017) The deactivation of Ce/TiO2 catalyst for NH3-SCR reaction by alkali metals: TPD and DRIFT studies. Catal Commun 89:143–147

    Article  CAS  Google Scholar 

  53. Lietti L, Nova I, Ramis G, Dall’Acqua L, Busca G, Giamello E, Forzatti P, Bregani F (1999) Characterization and reactivity of V2O5–MoO3/TiO2 De-NOx SCR catalysts. J Catal 187(2):419–435

    Article  CAS  Google Scholar 

  54. Liu H, Fan ZX, Sun CZ, Yu SH, Feng S, Chen W, Chen DZ, Tang CJ, Gao F, Dong L (2019) Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3. Appl Catal B Environ 244:671–683

    Article  CAS  Google Scholar 

  55. Topsoe NY (1994) Mechanism of the selective catalytic reduction of nitric-oxide by ammonia elucidated by in situ online fourier-transform infrared-spectroscopy. Science 265(5176):1217–1219

    Article  CAS  Google Scholar 

  56. Li X, Li X, Li J, Hao J (2017) High calcium resistance of CeO2–WO3 SCR catalysts: structure investigation and deactivation analysis. Chem Eng J 317:70–79

    Article  CAS  Google Scholar 

  57. Sun P, Guo RT, Liu SM, Wang SX, Pan WG, Li MY, Liu SW, Liu J, Sun X (2017) Enhancement of the low-temperature activity of Ce/TiO2 catalyst by Sm modification for selective catalytic reduction of NOx with NH3. Mol Catal 433:224–234

    Article  CAS  Google Scholar 

  58. Yu YK, Miao JF, Wang JX, He C, Chen JS (2017) Facile synthesis of CuSO4/TiO2 catalysts with superior activity and SO2 tolerance for NH3-SCR: physicochemical properties and reaction mechanism. Catal Sci Technol 7(7):1590–1601

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of Fujian Province, China (2016J05048), Fujian Institute of Innovation, Chinese Academy of Sciences, Bureau of Science and Technology, Fujian Province, China (2015H0043), National Natural Science Foundation of China (21403210).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinsheng Chen or Jinxiu Wang.

Ethics declarations

Conflicts of interest

No conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Miao, J., Su, Q. et al. Improvement in alkali metal resistance of commercial V2O5–WO3/TiO2 SCR catalysts modified by Ce and Cu. J Mater Sci 54, 14707–14719 (2019). https://doi.org/10.1007/s10853-019-03919-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03919-5

Navigation