Skip to main content
Log in

Fabrication and characterization of high efficient Z-scheme photocatalyst Bi2MoO6/reduced graphene oxide/BiOBr for the degradation of organic dye and antibiotic under visible-light irradiation

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel Bi2MoO6/reduced graphene oxide/BiOBr (Bi2MoO6/RGO/BiOBr) composite was successfully synthesized via a facile solvothermal synthesis and precipitation method. The Bi2MoO6/RGO/BiOBr composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy (UV–vis DRS) and photoelectrochemical measurements. The photocatalytic properties were explored for removal of methylene blue (MB) and norfloxacin (NFX) under visible-light irradiation. The Bi2MoO6/RGO/BiOBr composite exhibits the highest degradation rate compared with Bi2MoO6, BiOBr and Bi2MoO6/BiOBr composite, and that removal ratios of MB and NFX were 96.93% and 78.12%, respectively. A Z-scheme catalytic mechanism suitable for the system was proposed based on the results of UV–vis DRS, free radical trapping experiments and MS carve analysis, in which RGO as an electronic medium can accelerate electron transfer. It is noteworthy that the close contact interface structure promotes the separation of electrons and holes and improves the photocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Lin H (1999) The study of oxygen spillover and back spillover on Pt/TiO2 by a potential dynamic sweep method. Mol Catal 144(1):189–197

    Article  CAS  Google Scholar 

  2. Legrini O, Oliveros E, Braun A-M (1993) Photochemical processes for water treatment. Chem Rev 93(2):671–698

    Article  CAS  Google Scholar 

  3. Wei X-X, Chen C-M, Guo S-Q et al (2014) Advanced visible-light-driven photocatalyst BiOBr–TiO2–graphene composite with graphene as a nano-filler. J Mater Chem A 2(13):4667–4675

    Article  CAS  Google Scholar 

  4. Zhang M, Shao C, Mu J et al (2011) One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. CrystEngComm 14(2):605–612

    Article  Google Scholar 

  5. Zhao S, Chen S, Yu H, Quan X (2012) g-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation. Sep Purif Technol 99(8):50–54

    Article  CAS  Google Scholar 

  6. Shang M, Wang W, Zhang L (2009) Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template. J Hazard Mater 167(1):803–809

    Article  CAS  Google Scholar 

  7. Huo Y, Zhang J, Dai K, Li Q, Liang C (2019) All-solid-state artificial Z-scheme porous g-C3N4/Sn2S3-DETA heterostructure photocatalyst with enhanced performance in photocatalytic CO2 reduction. Appl Catal B Environ 241:528–538

    Article  CAS  Google Scholar 

  8. Li Z, Wang X, Zhang J, Liang C, Lu L, Dai K (2019) Preparation of Z-scheme WO3(H2O)0.333/Ag3PO4 composites with enhanced photocatalytic activity and durability. Chin J Catal 40(3):326–334

    Article  CAS  Google Scholar 

  9. Lv J, Zhang J, Liu J, Li Z, Dai K, Liang C (2017) Bi SPR-promoted Z-scheme Bi2MoO6/CdS-diethylenetriamine composite with effectively enhanced visible light photocatalytic hydrogen evolution activity and stability. ACS Sustain Chem Eng 6(1):696–706

    Article  CAS  Google Scholar 

  10. Wang Z, Lv J, Zhang J, Dai K, Liang C (2017) Facile synthesis of z-scheme BiVO4/porous graphite carbon nitride heterojunction for enhanced visible-light-driven photocatalyst. Appl Surf Sci 430:595–602

    Article  CAS  Google Scholar 

  11. Zhang S, Wang D (2015) Preparation of novel BiOBr/CeO2 heterostructured photocatalysts and their enhanced photocatalytic activity. RSC Adv 5(113):93032–93040

    Article  CAS  Google Scholar 

  12. Xing Y, He Z, Que W (2016) Synthesis and characterization of ZnO nanospheres sensitized BiOBr plates with enhanced photocatalytic performances. Mater Lett 182:210–213

    Article  CAS  Google Scholar 

  13. Shan L, Liu Y, Chen H (2017) An α-Bi2O3/BiOBr core–shell heterojunction with high photocatalytic activity. Dalton Trans 46(7):2310

    Article  CAS  Google Scholar 

  14. Tian G, Chen Y, Zhou W et al (2010) Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts. J Mater Chem 21(3):887–892

    Article  Google Scholar 

  15. Tian Y, Cheng F, Xiang Z et al (2014) Solvothermal synthesis and enhanced visible light photocatalytic activity of novel graphitic carbon nitride-Bi2MoO6 heterojunctions. Powder Technol 267(15):126–133

    Article  CAS  Google Scholar 

  16. Xu Y, Zhang W (2013) Monodispersed Ag3PO4 nanocrystals loaded on the surface of spherical Bi2MoO6 with enhanced photocatalytic performance. Dalton Trans 42(4):1094–1101

    Article  CAS  Google Scholar 

  17. Hu T, Yang Y, Dai K, Zhang J, Liang C (2018) A novel Z-scheme Bi2MoO6/BiOBr photocatalyst for enhanced photocatalytic activity under visible light irradiation. Appl Surf Sci 456(31):473–481

    Article  CAS  Google Scholar 

  18. Wang Z, Hu T, Dai K, Zhang J, Liang C (2017) Construction of Z-scheme Ag3PO4/Bi2WO6 composite with excellent visible-light photodegradation activity for removal of organic contaminants. Chin J Catal 38(12):2021–2029

    Article  CAS  Google Scholar 

  19. Lv J, Dai K, Zhang J, Lu L, Liang C, Geng L et al (2017) In situ controllable synthesis of novel surface plasmon resonance-enhanced Ag2WO4/Ag/Bi2MoO6 composite for enhanced and stable visible light photocatalyst. Appl Surf Sci 391:507–515

    Article  CAS  Google Scholar 

  20. Zhang R, Cai Y, Zhu X (2019) A novel photocatalytic membrane decorated with PDA/RGO/Ag3PO4 for catalytic dye decomposition. Colloid Surface A 563:68–76

    Article  CAS  Google Scholar 

  21. Zhang Y, Zhu Y, Yu J (2013) Enhanced photocatalytic water disinfection properties of Bi2MoO6–RGO nanocomposites under visible light irradiation. Nanoscale 5(14):6307–6310

    Article  CAS  Google Scholar 

  22. Chen P-L, Chen I-W (2010) Reactive cerium (IV) oxide powders by the homogeneous precipitation method. J Am Ceram Soc 76(6):1577–1583

    Article  Google Scholar 

  23. Wang S, Yang X, Zhang X (2017) A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr–Bi2MoO6 with enhanced photocatalytic performance. Appl Surf Sci 391:194–201

    Article  CAS  Google Scholar 

  24. Fu Y, Chen H, Sun X, Wang X (2012) Combination of cobalt ferrite and graphene: highperformance and recyclable visible-light photocatalysis. Appl Catal B Environ 111–112:280–287

    Article  CAS  Google Scholar 

  25. Qiu F, Li W, Wang F et al (2017) In-situ synthesis of novel Z-scheme SnS2/BiOBr photocatalysts with superior photocatalytic efficiency under visible light. J Colloid Interface Sci 493:1–9

    Article  CAS  Google Scholar 

  26. Kong L, Jiang Z, Xiao T (2011) Exceptional visible-light-driven photocatalytic activity over BiOBr–ZnFe2O4 heterojunctions. Chem Commun 47(19):5512–5514

    Article  CAS  Google Scholar 

  27. Xie L-J, Ma J-F, Xu G-J (2008) Preparation of a novel Bi2MoO6 flake-like nanophotocatalyst by molten salt method and evaluation for photocatalytic decomposition of rhodamine B. Mater Chem Phys 110(2–3):197–200

    Article  CAS  Google Scholar 

  28. Chen F, Yang Q, Li X et al (2017) Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: An efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation. Appl Catal B Environ 200:330–342

    Article  CAS  Google Scholar 

  29. Liu Y, Yang ZH, Song PP et al (2018) Facile synthesis of Bi2MoO6/ZnSnO3 heterojunction with enhanced visible light photocatalytic degradation of methylene blue. Appl Surf Sci 430:561–570

    Article  CAS  Google Scholar 

  30. Li H, Li W, Wang F, Liu F et al (2018) Fabrication of Pt nanoparticles decorated Gd-doped Bi2MoO6 nanosheets: design, radicals regulating and mechanism of Gd/Pt–Bi2MoO6 photocatalyst. Appl Surf Sci 427:1046–1053

    Article  CAS  Google Scholar 

  31. Xu Y-S, Zhang W-D et al (2013) Anion exchange strategy for construction of sesame-biscuit-like Bi2O2CO3/Bi2MoO6 nanocomposites with enhanced photocatalytic activity. Appl Catal B Environ 140–141(8):306–316

    Article  CAS  Google Scholar 

  32. Zhang M, Shao C, Mu J, Zhang Z et al (2012) One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. CrystEngComm 14:605–612

    Article  CAS  Google Scholar 

  33. Wang Z, Zhang J, Lv J, Dai K, Liang C (2017) Plasmonic Ag2MoO4/AgBr/Ag composite excellent photocatalytic performance and possible photocatalytic mechanism. Appl Surf Sci 396:791–798

    Article  CAS  Google Scholar 

  34. Meng X, Zhang Z (2016) Plasmonic ternary Ag–rGO–Bi2MoO6 composites with enhanced visible light-driven photocatalytic activity. J Catal 344:616–630

    Article  CAS  Google Scholar 

  35. Luo Y, Huang Q, Li B et al (2017) Synthesis and characterization of Cu2O-modified Bi2O3 nanospheres with enhanced visible light photocatalytic activity. Appl Surf Sci 357:1072–1079

    Article  CAS  Google Scholar 

  36. Ma D, Wu J, Gao M, Xin Y, Chai C (2017) Enhanced debromination and degradation of 2, 4-dibromophenol by an Z-scheme Bi2MoO6/CNTs/g-C3N4 visible light photocatalyst. Chem Eng J 316:461–470

    Article  CAS  Google Scholar 

  37. Jia Y, Ma Y, Tang J, Shi W (2018) Hierarchical nanosheet-based Bi2MoO6 microboxes for efficient photocatalytic performance. Dalton Trans 47:5542–5547

    Article  CAS  Google Scholar 

  38. Shi Q, Zhao W, Xie L et al (2016) Enhanced visible-light driven photocatalytic mineralization of indoor toluene via a BiVO4/reduced graphene oxide/Bi2O3 all-solid-state Z-scheme system. J Alloys Compd 662:108–117

    Article  CAS  Google Scholar 

  39. Xu B, He P, Liu H et al (2014) A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew Chem Int Ed 126:2339–2343

    Article  CAS  Google Scholar 

  40. Song S, Meng A, Jiang S, Cheng B, Jiang C (2017) Construction of Z-scheme Ag2CO3/N-doped graphene photocatalysts with enhanced visible-light photocatalytic activity by tuning the nitrogen species. Appl Surf Sci 396:1368–1374

    Article  CAS  Google Scholar 

  41. Xu D, Cheng B, Wang W et al (2018) Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2, reduction activity. Appl Catal B Environ 231:368–380

    Article  CAS  Google Scholar 

  42. Cai T, Liu Y, Wang L, Zhang S et al (2017) Silver phosphate-based Z-scheme photocatalytic system with superiorsunlight photocatalytic activities and anti-photocorrosion performance. Appl Catal B Environ 208:1–13

    Article  CAS  Google Scholar 

  43. Liu Y, Wang R, Yang Z et al (2015) Enhanced visible-light photocatalytic activity of Z-scheme graphitic carbon nitride/oxygen vacancy-rich zinc oxide hybrid photocatalysts. Chin J Catal 36(12):2135–2144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Han, Q., Li, Y. et al. Fabrication and characterization of high efficient Z-scheme photocatalyst Bi2MoO6/reduced graphene oxide/BiOBr for the degradation of organic dye and antibiotic under visible-light irradiation. J Mater Sci 54, 14157–14170 (2019). https://doi.org/10.1007/s10853-019-03883-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03883-0

Navigation