Skip to main content
Log in

Mechanical properties and microstructure characterization of natural rubber reinforced by helical carbon nanofibers

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Reinforcement of natural rubber (NR) was achieved by a novel kind of carbon filler, helical carbon nanofibers (HCNFs). The good interface bonding between HCNFs and NR matrix was confirmed by the analysis of transmission electron microscopy, scanning electron microscopy and dynamic mechanical analyzer. The tensile and dynamic mechanical properties of HCNFs/NR nanocomposites with the filler loading of 1–5 phr were studied. When the filler loading is 5 phr, HCNFs/NR nanocomposites have a significant enhancement in the modulus at 300% strain (464% and 163% higher than pure NR and N330/NR, respectively), storage modulus (83.5% and 82% higher than pure NR and N330/NR, respectively) at 0 °C, with a small decrease in elongation at break. The unique carbon coil structure and abundant surface oxygen-containing functional groups of HCNFs play a critical role in the formation of good interface bonding between HCNFs and NR matrix. This work can provide guidance for the development of HCNFs filled rubber materials with excellent mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Guth E (1945) Theory of filler reinforcement. J Appl Phys 16:20–25

    Article  Google Scholar 

  2. Dong B, Zhang LQ, Wu YP (2017) Influences of different dimensional carbon-based nanofillers on fracture and fatigue resistance of natural rubber composites. Polym Test 63:281–288

    Article  Google Scholar 

  3. Huang C, Huang GS, Li SQ, Luo MC, Liu H, Fu X, Qu W, Xie ZT, Wu JR (2018) Research on architecture and composition of natural network in natural rubber. Polymer 154:90–100

    Article  Google Scholar 

  4. Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26:369–377

    Article  Google Scholar 

  5. Bhattacharyya S, Sinturel C, Bahloul O, Saboungi M, Thomas S, Salvetat J (2008) Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 46:1037–1045

    Article  Google Scholar 

  6. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part A Polym Chem 4:323–328

    Google Scholar 

  7. Selvin Thomas P, Abdullateef AA, Al-Harthi MA, Atieh MA, De SK, Rahaman M, Chaki TK, Khastgir D, Bandyopadhyay S (2012) Electrical properties of natural rubber nanocomposites: effect of 1-octadecanol functionalization of carbon nanotubes. J Mater Sci 47:3344–3349. https://doi.org/10.1007/s10853-011-6174-4

    Article  Google Scholar 

  8. Hou JQ, Zhou XD, Zhou XG (2011) Grafting of Poly(n-butylacrylate)-b -poly(2-hydroxyethyl methacrylate) on carbon fiber and its effect on composite properties. Polym Plast Technol Eng 50:260–265

    Article  Google Scholar 

  9. Matos CF, Galembeck F, Zarbin AJG (2014) Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide. Carbon 78:469–479

    Article  Google Scholar 

  10. Hernández M, Bernal MDM, Verdejo R, Ezquerra TA, López-Manchado MA (2012) Overall performance of natural rubber/graphene nanocomposites. Compos Sci Technol 73:40–46

    Article  Google Scholar 

  11. Li S, Li Z, Burnett TL, Slater TJA, Hashimoto T, Young RJ (2017) Nanocomposites of graphene nanoplatelets in natural rubber: microstructure and mechanisms of reinforcement. J Mater Sci 52:9558–9572. https://doi.org/10.1007/s10853-017-1144-0

    Article  Google Scholar 

  12. Jong L (2016) Particle size and particle–particle interactions on tensile properties and reinforcement of corn flour particles in natural rubber. Eur Polym J 74:136–147

    Article  Google Scholar 

  13. Du XY, Zhang YC, Pan XM, Meng FR, You JH, Wang ZF (2019) Preparation and properties of modified porous starch/carbon black/natural rubber composites. Compos B 156:1–7

    Article  Google Scholar 

  14. Fang QH, Song B, Tee T, Sin LT, Hui D, Bee S (2014) Investigation of dynamic characteristics of nano-size calcium carbonate added in natural rubber vulcanizate. Compos B 60:561–567

    Article  Google Scholar 

  15. Zhao GZ, Shi LY, Zhang DS, Feng X, Yuan S, Zhuo J (2012) Synergistic effect of nanobarite and carbon black fillers in natural rubber matrix. Mater Des 35:847–853

    Article  Google Scholar 

  16. Volodin A, Ahlskog M, Fonseca A, Nagy JB (2000) Imaging the elastic properties of coiled carbon nanotubes with atomic force microscopy. Phys Rev Lett 84:3342–3345

    Article  Google Scholar 

  17. Raghubanshi H, Dikio E (2015) Synthesis of helical carbon fibers and related materials: a review on the past and recent developments. Nanomater Basel 5:937–968

    Article  Google Scholar 

  18. Chen XQ, Zhang SL, Dikin DA, Ding WQ, Ruoff RS (2003) Mechanics of a carbon nanocoil. Nano Lett 3:1299–1304

    Article  Google Scholar 

  19. Choi WH, Choi MJ, Bang JH (2015) Nitrogen-doped carbon nanocoil array integrated on carbon nanofiber paper for supercapacitor electrodes. ACS Appl Mater Inter 7:19370–19381

    Article  Google Scholar 

  20. Motojima S, Hoshiya S, Hishikawa Y (2003) Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands. Carbon 41:2658–2660

    Article  Google Scholar 

  21. Hu JT, Zhao TK, Peng XR, Yang WB, Ji XL, Li TH (2018) Growth of coiled amorphous carbon nanotube array forest and its electromagnetic wave absorbing properties. Compos Part B 134:91–97

    Article  Google Scholar 

  22. Katsuno T, Chen X, Yang S, Motojima S, Homma M, Maeno T, Konyo M (2006) Observation and analysis of percolation behavior in carbon microcoils/silicone–rubber composite sheets. Appl Phys Lett 88:232115–232119

    Article  Google Scholar 

  23. Yoshimura K, Nakano K, Miyake T, Hishikawa Y, Motojima S (2006) Effectiveness of carbon microcoils as a reinforcing material for a polymer matrix. Carbon 44:2833–2838

    Article  Google Scholar 

  24. Lau KT, Lu M, Hui D (2006) Coiled carbon nanotubes: synthesis and their potential applications in advanced composite structures. Compos Part B 37:437–448

    Article  Google Scholar 

  25. Jin YZ, Jian C, Fu QS, Li BH, Zhang HZ, Yong G (2015) Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition. Appl Surf Sci 324:438–442

    Article  Google Scholar 

  26. Jin YZ, Ren J, Chen J, Dai ZY, Li BH, Zhou XS (2018) Controllable preparation of helical carbon nanofibers by CCVD method and their characterization. Mater Res Express 5:015601

    Article  Google Scholar 

  27. Chen J (2018) Study on modification of carbon black. In: Chen J, Jin YZ (eds) Study on structure and activity of carbon black. Science Press, p 214

  28. Gao Y, Li LY, Tan PH, Liu LQ, Zhang Z (2010) Application of raman spectroscopy in carbon nanotube-based polymer composites. Chin Sci Bul 55:3978–3988

    Article  Google Scholar 

  29. Zhao Q, Wagner HD (2004) Raman spectroscopy of carbon-nanotube-based composites. Philos Trans R Soc Lond Ser A 362:2407–2424

    Article  Google Scholar 

  30. Ismail H, Shuhelmy S, Edyham MR (2002) The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites. Eur Polym J 38:39–47

    Article  Google Scholar 

  31. Tzounis L, Debnath S, Rooj S, Fischer D, Mäder E, Das A, Stamm M, Heinrich G (2014) High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers. Mater Des 58:1–11

    Article  Google Scholar 

  32. Angellier H, Molina-Boisseau S, Lebrun L, Dufresne A (2005) Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber. Macromolecules 38:3783–3792

    Article  Google Scholar 

  33. Nagaraja SM, Mujtaba A, Beiner M (2017) Quantification of different contributions to dissipation in elastomer nanoparticle composites. Polymer 111:48–52

    Article  Google Scholar 

  34. Kumagai Kumagai A, Tajima N, Iwamoto S, Morimoto T, Nagatani A, Okazaki T, Endo T (2019) Properties of natural rubber reinforced with cellulose nanofibers based on fiber diameter distribution as estimated by differential centrifugal sedimentation. Int J Biol Macromol 121:989–995

    Article  Google Scholar 

  35. Sumita M, Tsukihi H, Miyasaka K, Ishikawa K (2010) Dynamic mechanical properties of polypropylene composites filled with ultrafine particles. J Appl Polym Sci 29:1523–1530

    Article  Google Scholar 

  36. Bokobza L, Kolodziej M (2006) On the use of carbon nanotubes as reinforcing fillers for elastomeric materials. Polym Int 55:1090–1098

    Article  Google Scholar 

  37. Thongnuanchan B, Ninjan R, Kaesaman A, Nakason C (2015) Studies on the ambient temperature crosslinking of latex films based on natural rubber grafted with poly(diacetone acrylamide) using DMTA. J Polym Res 22:115

    Article  Google Scholar 

  38. Favier V, Cavaillé JY, Canova GR, Shrivastava SC (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739

    Article  Google Scholar 

  39. Peng Z, Feng CF, Luo YY, Li YZ, Kong LX (2010) Self-assembled natural rubber/multi-walled carbon nanotube composites using latex compounding techniques. Carbon 48:4497–4503

    Article  Google Scholar 

  40. Wolff S (1996) Chemical aspects of rubber reinforcement by fillers. Rubber Chem Technol 69:325–346

    Article  Google Scholar 

  41. Rivin D (1971) Surface properties of carbon. Rubber Chem Technol 2:307–343

    Article  Google Scholar 

  42. Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27:627–687

    Article  Google Scholar 

  43. Curran SA, Cech J, Zhang D, Dewald JL, Avadhanula A, Kandadai M, Roth S (2006) Thiolation of carbon nanotubes and sidewall functionalization. J Mater Res 21:1012–1018

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (51572177), the Scientific and Technical Project of Sichuan Province (2019YJ0479).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongzhong Jin or Jian Chen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Jin, Y., Chen, J. et al. Mechanical properties and microstructure characterization of natural rubber reinforced by helical carbon nanofibers. J Mater Sci 54, 12962–12971 (2019). https://doi.org/10.1007/s10853-019-03771-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03771-7

Navigation