Skip to main content
Log in

Tuning the morphology and chemical composition of MoS2 nanostructures

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chemical vapor deposition has proven to be one of the most promising approaches to achieve large-scale and high-quality ultra-thin layered materials in general, and single- and few-layer transition metal dichalcogenides in particular. Therefore, the study of the conditions affecting the growth and the obtained structure (morphology and chemical composition) is of crucial importance in order to improve its consistency and generalize these methodologies for the growth of other 2D materials. Here, we show that the growth temperature and pressure have significant effect on the final MoS2 morphology, leading to completely different results: homogeneous surface coverage with inorganic fullerenes, loosely surface bound thin elongated hexagonal nanostructures and single-layer domains. This work focuses on the characterization of the less common elongated hexagonal nanostructures, including their growth mechanism, phase, chemical composition, doping and electronic properties. An interesting epitaxial relation between the MoS2 layers and the metal oxide particle, which may have practical implications in the future, is demonstrated and discussed as well. Finally, we demonstrate the in situ doping and alloying to form MoS2-xSex nanostructures. This work provides new insights into the growth mechanism puzzle of MoS2 nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Novoselov KS et al (2012) A roadmap for graphene. Nature 490(7419):192–200

    Article  CAS  Google Scholar 

  2. Bonaccorso F et al (2012) Production and processing of graphene and 2d crystals. Mater Today 15(12):564–589

    Article  CAS  Google Scholar 

  3. Li X et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314

    Article  CAS  Google Scholar 

  4. Butler SZ et al (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4):2898–2926

    Article  CAS  Google Scholar 

  5. Bhimanapati GR et al (2015) Recent advances in two-dimensional materials beyond graphene. ACS Nano 9(12):11509–11539

    Article  CAS  Google Scholar 

  6. Guo W et al (2018) Controlling fundamental fluctuations for reproducible growth of large single-crystal graphene. ACS Nano 12(2):1778–1784

    Article  CAS  Google Scholar 

  7. Hao Y et al (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342(6159):720–723

    Article  CAS  Google Scholar 

  8. Ismach A et al (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10(5):1542–1548

    Article  CAS  Google Scholar 

  9. Lin L et al (2016) Surface engineering of copper foils for growing centimeter-sized single-crystalline graphene. ACS Nano 10(2):2922–2929

    Article  CAS  Google Scholar 

  10. Yan Z et al (2012) Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6(10):9110–9117

    Article  CAS  Google Scholar 

  11. Ismach A et al (2012) Toward the controlled synthesis of hexagonal boron nitride films. ACS Nano 6(7):6378–6385

    Article  CAS  Google Scholar 

  12. Ismach A et al (2017) Carbon-assisted chemical vapor deposition of hexagonal boron nitride. 2D Mater 4:025117

    Article  CAS  Google Scholar 

  13. Mende PC et al (2017) Characterization of hexagonal boron nitride layers on nickel surfaces by low-energy electron microscopy. Surf Sci 659:31–42

    Article  CAS  Google Scholar 

  14. Shi YM et al (2010) Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett 10(10):4134–4139

    Article  CAS  Google Scholar 

  15. Song L et al (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10(8):3209–3215

    Article  CAS  Google Scholar 

  16. Kim KK et al (2012) Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett 12(1):161–166

    Article  CAS  Google Scholar 

  17. Tay RY et al (2014) Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper. Nano Lett 14(2):839–846

    Article  CAS  Google Scholar 

  18. Lu GY et al (2015) Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy. Nat Commun 6:6160

    Article  CAS  Google Scholar 

  19. Jang AR et al (2016) Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett 16(5):3360–3366

    Article  CAS  Google Scholar 

  20. Fiori G et al (2014) Electronics based on two-dimensional materials. Nat Nanotechnol 9(10):768–779

    Article  CAS  Google Scholar 

  21. Xia FN et al (2014) Two-dimensional material nanophotonics. Nat Photonics 8(12):899–907

    Article  CAS  Google Scholar 

  22. Hod O et al (2018) Flatlands in the holy land: the evolution of layered materials research in Israel. Adv Mater 30:1706581

    Article  CAS  Google Scholar 

  23. Liu Y et al (2014) Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique. Nano Lett 14(8):4682–4686

    Article  CAS  Google Scholar 

  24. Lee Y-H et al (2012) Synthesis of large-area MOS2 atomic layers with chemical vapor deposition. Adv Mater 24(17):2320–2325

    Article  CAS  Google Scholar 

  25. Kang K et al (2015) High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549):656–660

    Article  CAS  Google Scholar 

  26. Gao Y et al (2015) Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat Commun 6:8569

    Article  CAS  Google Scholar 

  27. Yu H et al (2017) Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 11(12):12001–12007

    Article  CAS  Google Scholar 

  28. Bilgin I et al (2015) Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9(9):8822–8832

    Article  CAS  Google Scholar 

  29. Liu X et al (2016) Rotationally commensurate growth of MoS2 on epitaxial graphene. ACS Nano 10(1):1067–1075

    Article  CAS  Google Scholar 

  30. Yu Y et al (2013) Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci Rep 3:1866

    Article  CAS  Google Scholar 

  31. Eichfeld SM et al (2015) Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano 9(2):2080–2087

    Article  CAS  Google Scholar 

  32. Kim H et al (2017) Suppressing nucleation in metal-organic chemical vapor deposition of MoS2 monolayers by Alkali Metal Halides. Nano Lett 17(8):5056–5063

    Article  CAS  Google Scholar 

  33. Lin Y-C et al (2018) Realizing large-scale, electronic-grade two-dimensional semiconductors. Acs. NANO 12(2):965–975

    CAS  Google Scholar 

  34. Wang S et al (2014) Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem Mater 26(22):6371–6379

    Article  CAS  Google Scholar 

  35. Diaz HC et al (2016) High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe2/MoS2. Appl Phys Lett 108(19):191606

    Article  CAS  Google Scholar 

  36. Ehlen N et al (2019) Narrow photoluminescence and Raman peaks of epitaxial MoS2 on graphene/Ir(111). 2d Mater 6(1):011006

    Article  Google Scholar 

  37. Lin HC et al (2018) Growth of atomically thick transition metal sulfide films on graphene/6H-SIC(0001) by molecular beam epitaxy. Nano Res 11(9):4722–4727

    Article  CAS  Google Scholar 

  38. Poh SM et al (2018) Molecular beam epitaxy of highly crystalline MoSe2 on hexagonal boron nitride. ACS Nano 12(8):7562–7570

    Article  CAS  Google Scholar 

  39. Xenogiannopoulou E et al (2015) High-quality, large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy. Nanoscale 7(17):7896–7905

    Article  CAS  Google Scholar 

  40. Chiappe D et al (2016) Controlled sulfurization process for the synthesis of large area MoS2 films and MoS2/WS2 heterostructures. Adv Mater Interfaces 3(4):1500635

    Article  CAS  Google Scholar 

  41. Orofeo CM et al (2014) Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Appl Phys Lett 105(8):083112

    Article  CAS  Google Scholar 

  42. Feng Q et al (2014) Growth of large-area 2D MoS2(l-x,)Se2x, Semiconductor. Adv Mater 26(17):2648–2653

    Article  CAS  Google Scholar 

  43. Cai Z et al (2018) Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chem Rev 118:6091–6133

    Article  CAS  Google Scholar 

  44. Zhu DC et al (2017) Capture the growth kinetics of CVD growth of two-dimensional MoS2. Npj 2D Mater Appl 1:1–8

    Article  Google Scholar 

  45. Shang SL et al (2016) Lateral Versus Vertical Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Thermodynamic Insight into MoS2. Nano Lett 16(9):5742–5750

    Article  CAS  Google Scholar 

  46. Ye H et al (2017) Toward a mechanistic understanding of vertical growth of van der Waals Stacked 2D materials: a multiscale model and experiments. ACS Nano 11(12):12780–12788

    Article  CAS  Google Scholar 

  47. Yun SJ et al (2015) Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano 9(5):5510–5519

    Article  CAS  Google Scholar 

  48. Shi JP et al (2015) Substrate facet effect on the growth of mono layer MoS2 on Au foils. ACS Nano 9(4):4017–4025

    Article  CAS  Google Scholar 

  49. Rajan AG et al (2016) Generalized mechanistic model for the chemical vapor deposition of 2D transition metal dichalcogenide monolayers. ACS Nano 10(4):4330–4344

    Article  CAS  Google Scholar 

  50. Cain JD et al (2016) Growth mechanism of transition metal dichalcogenide monolayers: the role of self-seeding fullerene nuclei. ACS Nano 10(5):5440–5445

    Article  CAS  Google Scholar 

  51. Feldman Y et al (1996) Bulk synthesis of inorganic fullerene-like MS(2) (M = Mo, W) from the respective trioxides and the reaction mechanism. J Am Chem Soc 118(23):5362–5367

    Article  CAS  Google Scholar 

  52. Wu K et al (2018) Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement. Nano Res 11(8):4123–4132

    Article  CAS  Google Scholar 

  53. Zak A et al (2009) Insight Into the growth mechanism of WS2 nanotubes in the scaled-up fluidized-bed reactor. NANO 4(2):91–98

    Article  CAS  Google Scholar 

  54. Duan X et al (2014) Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nanotechnol 9(12):1024–1030

    Article  CAS  Google Scholar 

  55. Dhakal KP et al (2017) Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem Mater 29(12):5124–5133

    Article  CAS  Google Scholar 

  56. Conley HJ et al (2013) Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 13(8):3626–3630

    Article  CAS  Google Scholar 

  57. Tenne R (2006) Inorganic nanotubes and fullerene-like nanoparticles. Nat Nanotechnol 1(2):103–111

    Article  CAS  Google Scholar 

  58. Tenne R, Seifert G (2009) Recent progress in the study of inorganic nanotubes and fullerene-like structures. Ann Rev Mater Res 39:387–413

    Article  CAS  Google Scholar 

  59. DeGregorio ZP, Yoo Y, Johns JE (2017) Aligned MoO2/MoS2 and MoO2/MoTe2 freestanding core/shell nanoplates driven by surface interactions. J Phys Chem Lett 8(7):1631–1636

    Article  CAS  Google Scholar 

  60. Wu D et al (2018) Epitaxial growth of highly oriented metallic MoO2@MoS2 nanorods on C-sapphire. J Phys Chem C 122(3):1860–1866

    Article  CAS  Google Scholar 

  61. Park T et al (2017) Synthesis of vertical MoO2/MoS2 core-shell structures on an amorphous substrate via chemical vapor deposition. J Phys Chem C 121(49):27693–27699

    Article  CAS  Google Scholar 

  62. Dieterle M, Mestl G (2002) Raman spectroscopy of molybdenum oxides—Part II. Resonance Raman spectroscopic characterization of the molybdenum oxides Mo4O11 and MoO2. Phys Chem Chem Phys 4(5):822–826

    Article  CAS  Google Scholar 

  63. Mak KF et al (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105(13):136805

    Article  CAS  Google Scholar 

  64. Tongay S, et al (2013) Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci Rep 3:2657

    Article  Google Scholar 

  65. Nan H et al (2014) Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8(6):5738–5745

    Article  CAS  Google Scholar 

  66. Desai SB et al (2014) Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett 14(8):4592–4597

    Article  CAS  Google Scholar 

  67. Gulbransen EA, Andrew KF, Brassart FA (1963) Vapor pressure of molybdenum trioxide. J Electrochem Soc 110(3):242–243

    Article  CAS  Google Scholar 

  68. Zhu D et al (2017) Capture the growth kinetics of CVD growth of two-dimensional MoS2. npj 2D Mater Appl 1(1):8

    Article  Google Scholar 

  69. Dumcenco D et al (2015) Large-area epitaxial mono layer MoS2. ACS Nano 9(4):4611–4620

    Article  CAS  Google Scholar 

  70. Ruzmetov D et al (2016) Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride. ACS Nano 10(3):3580–3588

    Article  CAS  Google Scholar 

  71. Bana H et al (2018) Epitaxial growth of single-orientation high-quality MoS2 monolayers. 2D Mater 5(3):035012

    Article  CAS  Google Scholar 

  72. Yan A et al (2015) Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett 15(10):6324–6331

    Article  CAS  Google Scholar 

  73. Dahl-Petersen C et al (2018) Topotactic growth of edge-terminated MoS2 from MoO2 nanocrystals. ACS Nano 12:5351–5358

    Article  CAS  Google Scholar 

  74. Rogers DB et al (1969) Crystal chemistry of metal dioxides with rutile-related structures. Inorg Chem 8(4):841–849

    Article  CAS  Google Scholar 

  75. Le CT et al (2017) Impact of Selenium Doping on Resonant Second-Harmonic Generation in Monolayer MoS2. Acs Photonics 4(1):38–44

    Article  CAS  Google Scholar 

  76. Feng QL et al (2015) Growth of MoS2(1-x)Se2x (x = 0.41-1.00) Monolayer alloys with controlled morphology by physical vapor deposition. Acs Nano 9(7):7450–7455

    Article  CAS  Google Scholar 

  77. Song JG et al (2015) Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nat Commun 6:7817

    Article  Google Scholar 

  78. Duan XD et al (2016) Synthesis of WS2xSe2-2x Alloy Nanosheets with Composition-Tunable Electronic Properties. Nano Lett 16(1):264–269

    Article  CAS  Google Scholar 

  79. Wang ZQ et al (2018) Synthesizing 1T-1H Two-Phase Mo1-xWxS2 Monolayers by Chemical Vapor Deposition. ACS Nano 12(2):1571–1579

    Article  CAS  Google Scholar 

  80. Wi S et al (2014) Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS Nano 8(5):5270–5281

    Article  CAS  Google Scholar 

  81. Sun QC et al (2013) Observation of a Burstein-Moss shift in rhenium-doped MoS2 nanoparticles. ACS Nano 7(4):3506–3511

    Article  CAS  Google Scholar 

  82. Fang H et al (2013) Degenerate n-Doping of Few-Layer Transition Metal Dichalcogenides by Potassium. Nano Lett 13(5):1991–1995

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.R., T.S. and A.I. acknowledge the support from the Israel Science Foundation, Grant Number 1784/15, and the Israeli Ministry of Energy, research Grant Number 0605405442.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Ismach.

Ethics declarations

Conflict of interest

This manuscript has not been published and is not under consideration for publication elsewhere. We have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6905 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radovsky, G., Shalev, T. & Ismach, A. Tuning the morphology and chemical composition of MoS2 nanostructures. J Mater Sci 54, 7768–7779 (2019). https://doi.org/10.1007/s10853-019-03437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03437-4

Navigation