Skip to main content
Log in

Synthesis and characterization of PNIPAM microgel core–silica shell particles

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We developed a simple effective approach to prepare poly(N-isopropylacrylamide-co-acrylamide-co-N,N′-methylenebisacrylamide) (PNIPAM/AM/MBA) microgel core–silica shell particles with narrow particle size distribution via the sol–gel reaction of silica precursor deposited directly on the microgel particle surface in the presence of 3-glycidyloxypropyltrimethoxysilane (GLYMO). MBA was used as the cross-linking agent for the formation of microgel with the cross-linked network structure and GLYMO used as a coupling agent. The morphology of hybrid core–shell particles including the shape, core size, shell thickness and surface roughness was governed by the key components of AM and GLYMO. PNIPAM/AM/MBA microgel core–silica shell particles show desirable spherical shape, distinct core–shell structure and raspberry-like particle morphology. In contrast, PNIPAM/MBA microgel core–silica shell particles formed without resort to AM and GLYMO result in very poor silica encapsulation, thereby leading to undesired particle morphology. Incorporation of AM units into PNIPAM/MBA microgel particles increases the lower critical solution temperature (LCST). Furthermore, encapsulation of PNIPAM/AM/MBA microgel particles by silica does not affect the LCST to an appreciable extent, but it greatly reduces the thermo-sensitivity of the hybrid core–shell particles. Finally, the feasibility of using these PNIPAM-based core–silica shell particles as drug carriers was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Gandhi A, Paul A, Sen SO, Sen KK (2015) Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci 10:99–107

    Article  Google Scholar 

  2. Kamachi Y, Bastakoti BP, Alshehri SM, Miyamoto N, Nakato T, Yamauchi Y (2016) Thermo-responsive hydrogels containing mesoporous silica toward controlled and sustainable releases. Mater Lett 168:176–179

    Article  Google Scholar 

  3. Cejková J, Hanuš J, Štepánek F (2010) Investigation of internal microstructure and thermo-responsive properties of composite PNIPAM/silica microcapsules. J Colloid Interface Sci 346:352–360

    Article  Google Scholar 

  4. Lim HL, Hwang Y, Kar M, Varghese S (2014) Smart hydrogels as functional biomimetic systems. Biomater Sci 2:603–618

    Article  Google Scholar 

  5. Schattling P, Jochuma FD, Theato P (2014) Multi-stimuli responsive polymers—the all-in-one talents. Polym Chem 5:25–36

    Article  Google Scholar 

  6. Sierra-Martin B, Retama JR, Laurenti M, Barbero AF, Cabarcos EL (2014) Structure and polymer dynamics within PNIPAM-based microgel particles. Adv Colloid Interface Sci 205:113–123

    Article  Google Scholar 

  7. López-León T, Ortega-Vinuesa JL, Bastos-González D, Elaissari A (2014) Thermally sensitive reversible microgels formed by poly(N-Isopropylacrylamide) charged chains: a Hofmeister effect study. J Colloid Interface Sci 426:300–307

    Article  Google Scholar 

  8. Oliveira TE, Mukherji D, Kremer K, Netz PA (2017) Effects of stereochemistry and copolymerization on the LCST of PNIPAm. J Chem Phys. https://doi.org/10.1063/1.4974165

    Google Scholar 

  9. Wei J, Li Y, Ngai T (2016) Tailor-made microgel particles: synthesis and characterization. Colloids Surf A: Physicochem Eng Asp 489:122–127

    Article  Google Scholar 

  10. Kwok MH, Ngai T (2016) A confocal microscopy study of micron-sized poly (N-isopropylacrylamide) microgel particles at the oil–water interface and anisotopic flattening of highly swollen microgel. J Colloid Interface Sci 461:409–418

    Article  Google Scholar 

  11. Haq MA, Su Y, Wang D (2017) Mechanical properties of PNIPAM based hydrogels: a review. Mater Sci Eng, C 70:842–855

    Article  Google Scholar 

  12. Abbott LJ, Tucker AK, Stevens MJ (2015) Single chain structure of a poly(N-isopropylacrylamide) surfactant in water. J Phys Chem B 119:3837–3845

    Article  Google Scholar 

  13. Liu K, Pan P, Bao Y (2015) Synthesis, micellization, and thermally-induced macroscopic micelle aggregation of poly(vinylchloride)-g-poly(N-isopropylacrylamide) amphiphilic copolymer. R Soc Chem 5:94582–94590

    Google Scholar 

  14. Bischofberger I, Trappe V (2015) New aspects in the phase behaviour of poly-N-isopropyl acrylamide: systematic temperature dependent shrinking of PNiPAM assemblies well beyond the LCST. Sci Rep. https://doi.org/10.1038/srep15520

    Google Scholar 

  15. Karg M, Hellweg T (2009) New “smart” poly(NIPAM) microgels and nanoparticle microgel hybrids: properties and advances in characterization. Curr Opin Colloid Interface Sci 14:438–450

    Article  Google Scholar 

  16. Nun N, Hinrichs S, Schroer MA, Sheyfer D, Grübel G, Fischer B (2017) Tuning the size of thermoresponsive poly(N-Isopropyl Acrylamide) grafted silica microgels. Gels. https://doi.org/10.3390/gels3030034

    Google Scholar 

  17. Byun H, Hu J, Pakawanit P, Srisombat L, Kim JH (2017) Polymer particles filled with multiple colloidal silica via in situ sol–gel process and their thermal property. Nanotechnology. https://doi.org/10.1088/0957-4484/28/2/025601

    Google Scholar 

  18. Duan L, Chen M, Zhou S, Wu L (2009) Synthesis and characterization of poly(N-isopropylacrylamide)/silica composite microspheres via inverse Pickering suspension polymerization. Langmuir 25:3467–3472

    Article  Google Scholar 

  19. Dechezelles JF, Malik V, Crassous JJ, Schurtenberger P (2013) Hybrid raspberry microgels with tunable thermoresponsive behavior. Soft Matter 9:2798–2802

    Article  Google Scholar 

  20. Wang L, Asher SA (2009) Fabrication of silica shell photonic crystals through flexible core templates. Chem Mater 21:4608–4613

    Article  Google Scholar 

  21. Hu X, Hao X, Wu Y, Zhang J, Zhang X, Wang PC, Zou G, Liang XJ (2013) Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dually response. J Mater Chem B Mater Biol Med 1:1109–1118

    Article  Google Scholar 

  22. Wang X, Gillham JK (1991) Competitive primary amine/epoxy and secondary amine/epoxy reactions: effect on the isothermal time-to-vitrify. J Appl Polym Sci 43:2267–2277

    Article  Google Scholar 

  23. Guillory X, Tessier A, Gratien GO, Weiss P, Colliec-Jouault S, Dubreuil D, Lebretonc J, Bideaua JL (2016) Glycidyl alkoxysilane reactivities towards simple nucleophiles in organic media for improved molecular structure definition in hybrid materials. RSC Adv 6:74087–74099

    Article  Google Scholar 

  24. Kim DY, Jin SH, Jeong SG, Lee B, Kang KK, Lee CS (2018) Microfluidic preparation of monodisperse polymeric microspheres coated with silica nanoparticles. Sci Rep. https://doi.org/10.1038/s41598-018-26829-z

    Google Scholar 

  25. Hua X, Tong Z, Lyon LA (2011) Control of poly(N-isopropylacrylamide) microgel network structure by precipitation polymerization near the lower critical solution temperature. Langmuir 27:4142–4148

    Article  Google Scholar 

  26. Halperin A, Kroger M, Winnik FM (2015) Poly(N-isopropylacrylamide) phase diagrams: fifty years of research. Angew Chem Int Ed 54:15342–15367

    Article  Google Scholar 

  27. Burmistrova A, Richter M, Eisele M, Üzüm C, Klitzing RV (2011) The effect of co-monomer content on the swelling/shrinking and mechanical behaviour of individually adsorbed PNIPAM microgel particles. Polymers 3(4):1575–1590

    Article  Google Scholar 

  28. Farooqi ZH, Khan HU, Shah SM, Siddiq M (2017) Stability of poly(N-isopropylacrylamide-co-acrylic acid) polymer microgels under various conditions of temperature, pH and salt concentration. Arab J Chem 10:329–335

    Article  Google Scholar 

  29. Chen J, Pei Y, Yang LM, Shi Li-li, Luo HJ (2005) Synthesis and properties of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylamide) hydrogels. J Shanghai Univ 9:466–470

    Article  Google Scholar 

  30. Fundueanu G, Constantin M, Ascenzi P (2009) Poly(N-isopropylacrylamide-co-acrylamide) cross-linked thermoresponsive microspheres obtained from preformed polymers: influence of the physico-chemical characteristics of drugs on their release profiles. Acta Biomater 5:363–373

    Article  Google Scholar 

  31. Caykara T, Kiper S, Demirel G (2006) Thermosensitive poly(N-isopropylacrylamide-co-acrylamide) hydrogels: synthesis, swelling and interaction with ionic surfactants. Eur Polym J 42:348–355

    Article  Google Scholar 

  32. Han HD, Shin BC, Choi HS (2006) Doxorubicin-encapsulated thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-acrylamide): drug release behavior and stability in the presence of serum. Eur J Pharm Biopharm 62:110–116

    Article  Google Scholar 

  33. Cai Z, Wang Y, Zhu LJ, Liu ZQ (2010) Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs. Curr Drug Metab 11:197–207

    Article  Google Scholar 

  34. Kwok M, Li Z, Ngai T (2013) Controlling the synthesis and characterization of micrometer-sized PNIPAM microgels with tailored morphologies. Langmuir 29:9581–9591

    Article  Google Scholar 

  35. Tauer K, Gau D, Schulze S, Völkel A, Dimova R (2009) Thermal property changes of poly(N-isopropylacrylamide) microgel particles and block copolymers. Colloid Polym Sci 287:299–312

    Article  Google Scholar 

  36. Wedel B, Brandel T, Bookhold J, Hellweg T (2017) Role of anionic surfactants in the synthesis of smart microgels based on different acrylamides. ACS Omega 2:84–90

    Article  Google Scholar 

  37. Xu Y, Chen W, Guo X, Tong Y, Fan T, Gao Ha WuX (2015) Preparation and characterization of single- and double-shelled cyhalothrin microcapsules based on the copolymer matrix of silica-N-isopropyl acrylamide-bis-acrylamide. RSC Adv 5:52866–52873

    Article  Google Scholar 

  38. Jadhav SA, Brunella V, Miletto I, Berlier G, Scalarone D (2016) Synthesis of poly(N-isopropylacrylamide) by distillation precipitation polymerization and quantitative grafting on mesoporous silica. J Appl Polym Sci 133:44181–44189

    Article  Google Scholar 

  39. Cai T, Yang Z, Li H, Yang H, Li A, Cheng R (2013) Effect of hydrolysis degree of hydrolyzed polyacrylamide grafted carboxymethyl cellulose on dye removal efficiency. Cellulose 20:2605–2614

    Article  Google Scholar 

  40. Fajardo AR, Fávaro SL, Rubira AF, Muniz EC (2013) Dual-network hydrogels based on chemically and physically crosslinked chitosan/chondroitin sulfate. React Funct Polym 73:1662–1671

    Article  Google Scholar 

  41. Tinio JVG, Simfroso KT, Peguit ADMV, Candidato RT (2015) Influence of OH ion concentration pn the surface morphology of ZnO–SiO2 Nanostructure. J Nanotechnol. https://doi.org/10.1155/2015/686021

    Google Scholar 

  42. Marins JA, Mija A, Pina JM, Giulieri F, Soares BG, Sbirrazzuolia N, Lançona P, Bossis G (2015) Anisotropic reinforcement of epoxy-based nanocomposites with aligned magnetite–sepiolite hybrid nanofiller. Compos Sci Technol 112:34–41

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Ministry of Science and Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chorng-Shyan Chern.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao-Luu, NH., Pham, QT., Yao, ZH. et al. Synthesis and characterization of PNIPAM microgel core–silica shell particles. J Mater Sci 54, 7503–7516 (2019). https://doi.org/10.1007/s10853-019-03317-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03317-x

Navigation