Skip to main content
Log in

Surface chemical bonding with poly(hexamethylene guanidine) for non-leaching antimicrobial poly(ethylene terephthalate)

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Many efforts have been devoted to developing functional poly(ethylene terephthalate) (PET) due to its special biomedical applications in surgical meshes, heart valves, vascular grafts, artificial ligaments, etc. However, for antimicrobial PET the release of antimicrobial component remains a concern. In this work, an antimicrobial compound with terminal epoxy group was synthesized by ethylene glycol diglycidyl ether (EGDE) and polyhexamethylene guanidine hydrochloride (PHMG). Then, EGDE–PHMG was chemically bonded with PET surface through a reaction between the epoxy group of EGDE–PHMG and the amino group of aminated PET to generate non-leaching and permanent antimicrobial PET. The content of PHMG on PET surface, morphology and hydrophilicity of surface, antimicrobial activity and mechanical property of PET were investigated. The amount of EGDE–PHMG on PET surface reached at 3.96 nmol/cm2, resulting in excellent antimicrobial activities against Escherichia coli and Staphylococcus aureus with above 99.99% of inhibition rates. Due to the good hydrophilicity, excellent antimicrobial property, non-leaching characteristic of antimicrobial component and good mechanical properties, the as-prepared antimicrobial PET was promising in the biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Salmi-Mani H, Terreros G, Barroca-Aubry N, Aymes-Chodur C, Regeard C, Roger P (2018) Poly(ethylene terephthalate) films modified by UV-induced surface graft polymerization of vanillin derived monomer for antibacterial activity. Eur Polym J 103:51–58

    Article  CAS  Google Scholar 

  2. Wang Y, Zhao J, Sha L, Zhu Y, Li X (2018) Design of broad-spectrum antimicrobial polyethylene terephthalate fabrics by coating composited natural brucites. J Mater Sci 53:1610–1622. https://doi.org/10.1007/s10853-017-1648-7

    Article  CAS  Google Scholar 

  3. Heeley EL, Hughes DJ, Crabb EM, Bowen J, Bikondoa O, Mayoral B, Leung S, Mcnally T (2017) The formation of a nanohybrid shish-kebab (NHSK) structure in melt-processed composites of poly(ethylene terephthalate) (PET) and multi-walled carbon nanotubes (MWCNTs). Polymer 117:208–219

    Article  CAS  Google Scholar 

  4. Lechat C, Bunsell AR, Davies P (2011) Tensile and creep behaviour of polyethylene terephthalate and polyethylene naphthalate fibres. J Mater Sci 46:528–533. https://doi.org/10.1007/s10853-010-4999-x

    Article  CAS  Google Scholar 

  5. Cai X, Yuan J, Chen S, Li P, Li L, Shen J (2014) Hemocompatibility improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterions. Mater Sci Eng C 36:42–48

    Article  CAS  Google Scholar 

  6. Li H, Chen S (2015) Biomedical coatings on polyethylene terephthalate artificial ligaments. J Biomed Mater Res Part A 103:839–845

    Article  Google Scholar 

  7. Swar S, Zajícová V, Rysová M, Voleský L, Stibor I (2017) Biocompatible surface modification of poly(ethylene terephthalate) focused on pathogenic bacteria: promising prospects in biomedical applications. J Appl Polym Sci 134:44990. https://doi.org/10.1002/app.44990

    Article  CAS  Google Scholar 

  8. Jaganathan SK, Balaji A, Vellayappan MV, Subramanian AP, John AA, Asokan MK, Supriyanto E (2015) Review: radiation-induced surface modification of polymers for biomaterial application. J Mater Sci 50:2007–2018. https://doi.org/10.1007/s10853-014-8718-x

    Article  CAS  Google Scholar 

  9. Lv J, Zhou Q, Zhi T, Gao D, Wang C (2016) Environmentally friendly surface modification of polyethylene terephthalate (PET) fabric by low-temperature oxygen plasma and carboxymethyl chitosan. J Clean Prod 118:187–196

    Article  CAS  Google Scholar 

  10. Jelil RA (2015) A review of low-temperature plasma treatment of textile materials. J Mater Sci 50:5913–5943. https://doi.org/10.1007/s10853-015-9152-4

    Article  CAS  Google Scholar 

  11. Kordoghli B, Khiari R, Dhaouadi H, Belgacem MN, Mhenni MF, Sakli F (2014) UV irradiation-assisted grafting of poly(ethylene terephthalate) fabrics. Colloids Surf A Physicochem Eng Asp 441:606–613. https://doi.org/10.1016/j.colsurfa.2013

    Article  CAS  Google Scholar 

  12. Zhang H, Shouro D, Itoh K, Takata T, Jiang Y (2007) Grafting polymer from poly(ethylene terephthalate) films by surface initiated ATRP. J Appl Polym Sci 108:351–357

    Article  Google Scholar 

  13. Carneiro-Da-Cunha MG, Cerqueira MA, Souza BWS, Carvalho S, Quintas MAC, Teixeira JA, Vicente AA (2010) Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydr Polym 82:153–159

    Article  CAS  Google Scholar 

  14. Zhu Y (2013) Aminolysis-based surface modification of polyesters for biomedical applications. RSC Adv 3:2509–2519

    Article  CAS  Google Scholar 

  15. Xu F, Zhang G, Zhang F, Zhang Y (2015) Facile preparation of super-hydrophilic poly(ethylene terephthalate) fabric using dilute sulfuric acid under microwave irradiation. Appl Surf Sci 349:437–444

    Article  CAS  Google Scholar 

  16. Kumar M, Bala R, Gondil VS, Pandey SK, Chhibber S, Jain DVS, Sharma RK, Wangoo N (2017) Combating food pathogens using sodium benzoate functionalized silver nanoparticles: synthesis, characterization and antimicrobial evaluation. J Mater Sci 52:8568–8575. https://doi.org/10.1007/s10853-017-1072-z

    Article  CAS  Google Scholar 

  17. Adepu S, Khandelwal M (2018) Broad-spectrum antimicrobial activity of bacterial cellulose silver nanocomposites with sustained release. J Mater Sci 53:1596–1609. https://doi.org/10.1007/s10853-017-1638-9

    Article  CAS  Google Scholar 

  18. Ando S, Hioki T, Yamada T, Watanabe N, Higashitani A (2012) Ag2O3 clathrate is a novel and effective antimicrobial agent. J Mater Sci 47:2928–2931. https://doi.org/10.1007/s10853-011-6125-0

    Article  CAS  Google Scholar 

  19. Pour SN, Ghugare SV, Wiens R, Gough K, Liu S (2015) Controlled in situ formation of polyacrylamide hydrogel on PET surface via SI-ARGET-ATRP for wound dressings. Appl Surf Sci 349:695–704

    Article  Google Scholar 

  20. Deng X, Nikiforov AY, Coenye T, Cools P, Aziz G, Morent R, De GN, Leys C (2015) Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process. Sci Rep 5:10138. https://doi.org/10.1038/srep10138

    Article  CAS  Google Scholar 

  21. Ou J, Wang Z, Wang F, Xue M, Li W, Amirfazli A (2016) Washable and antibacterial superhydrophobic fabric. Appl Surf Sci 364:81–85

    Article  CAS  Google Scholar 

  22. Asharani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  Google Scholar 

  23. Salgado CL, Sanchez EMS, Mano JF, Moraes AM (2012) Characterization of chitosan and polycaprolactone membranes designed for wound repair application. J Mater Sci 47:659–667. https://doi.org/10.1007/s10853-011-5836-6

    Article  CAS  Google Scholar 

  24. Zemljič LF, Tkavc T, Vesel A, Šauperl O (2013) Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material. Appl Surf Sci 265:697–703

    Article  Google Scholar 

  25. Fu J, Ji J, Yuan W, Shen J (2005) Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials 26:6684–6692

    Article  CAS  Google Scholar 

  26. Del HS, Pã Rez-Ã Lvarez L, Gã Mez-Galvã NF, Lizundia E, Kuritka I, Sedlarik V, Laza JM, Vila-Vilela JL (2016) Construction of antibacterial poly(ethylene terephthalate) films via layer by layer assembly of chitosan and hyaluronic acid. Carbohydr Polym 143:35–43

    Article  Google Scholar 

  27. Mohamed NH, Bahners T, Wego A, Gutmann JS, Ulbricht M (2012) Surface modification of poly(ethylene terephthalate) fabric via photo-chemical reaction of dimethylaminopropyl methacrylamide. Appl Surf Sci 259:261–269

    Article  CAS  Google Scholar 

  28. Lin J, Winkelmann C, Worley SD, Kim J, Wei CI, Cho U, Broughton RM, Santiago JI, Williams JF (2002) Biocidal polyester. J Appl Polym Sci 85:177–182

    Article  CAS  Google Scholar 

  29. Hyun SH, Kim MW, Oh DH, Kang IK, Kim WS (2006) Surface characterization of 8-quinolinyl acrylate-grafted poly(ethylene terephthalate) prepared by plasma glow discharge and it’s antibacterial activity. J Appl Polym Sci 101:863–868

    Article  CAS  Google Scholar 

  30. Bech L, Meylheuc T, Lepoittevin B, Roger P (2007) Chemical surface modification of poly(ethylene terephthalate) fibers by aminolysis and grafting of carbohydrates. J Polym Sci Part A Polym Chem 45:2172–2183

    Article  CAS  Google Scholar 

  31. Lepoittevin B, Costa L, Pardoue S, Dragoé D, Mazerat S, Roger P (2016) Hydrophilic PET surfaces by aminolysis and glycopolymer brushes chemistry. J Polym Sci Part A Polym Chem 54:2689–2697

    Article  CAS  Google Scholar 

  32. Maaz M, Elzein T, Bejjani A, Barroca-Aubry N, Lepoittevin B, Dragoe D, Mazerat S, Nsouli B, Roger P (2017) Surface initiated supplemental activator and reducing agent atom transfer radical polymerization (SI-SARA-ATRP) of 4-vinylpyridine on Poly(ethylene terephthalate). J Colloid Interf Sci 500:69–78

    Article  CAS  Google Scholar 

  33. Aviv O, Amir N, Laout N, Ratner S, Basu A, Domb AJ (2016) Poly(hexamethylene guanidine)-poly(ethylene glycol) solid blend for water microbial deactivation. Polym Degrad Stabil 129:239–245

    Article  CAS  Google Scholar 

  34. Xin Z, Du S, Zhao C, Chen H, Sun M, Yan S, Luan S, Yin J (2016) Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components. Appl Surf Sci 365:99–107

    Article  CAS  Google Scholar 

  35. Zhang C, Ying Z, Luo Q, Du H, Wang Y, Zhang K, Yan S, Li X, Shen Z, Zhu W (2017) Poly(hexamethylene guanidine)-based hydrogels with long lasting antimicrobial activity and low toxicity. J Polym Sci Part A Polym Chem 55:2027–2035

    Article  CAS  Google Scholar 

  36. Wang H, Wei D, Ziaee Z, Xiao H, Zheng A, Zhao Y (2015) Preparation and properties of nonleaching antimicrobial linear low-density polyethylene films. Ind Eng Chem Res 54:1824–1831

    Article  CAS  Google Scholar 

  37. Wang H, Wei D, Zheng A, Xiao H (2015) Soil burial biodegradation of antimicrobial biodegradable PBAT films. Polym Degrad Stabil 116:14–22

    Article  CAS  Google Scholar 

  38. Wei D, Wang H, Ziaee Z, Chibante F, Zheg A, Xiao H (2016) Non-leaching antimicrobial biodegradable PBAT films through a facile and novel approach. Mater Sci Eng C 58:986–991

    Article  CAS  Google Scholar 

  39. Wei D, Chen Y, Zhang Y (2016) Preparation of novel stable antibacterial nanoparticles using hydroxyethylcellulose and application in paper. Carbohydr Polym 136:543–550

    Article  CAS  Google Scholar 

  40. Wei D, Li Z, Wang H, Liu J, Xiao H, Zheng A, Guan Y (2017) Antimicrobial paper obtained by dip-coating with modified guanidine-based particle aqueous dispersion. Cellulose 24:3901–3910

    Article  CAS  Google Scholar 

  41. Li Z, Chen J, Cao W, Wei D, Zheng A, Guan Y (2018) Permanent antimicrobial cotton fabrics obtained by surface treatment with modified guanidine. Carbohydr Polym 180:192–199

    Article  CAS  Google Scholar 

  42. Grare M, Dibama HM, Lafosse S, Ribon A, Mourer M, Regnoufdevains JB, Finance C, Duval RE (2010) Cationic compounds with activity against multidrug-resistant bacteria: interest of a new compound compared with two older antiseptics, hexamidine and chlorhexidine. Clin Microbiol Infect 16:432–438

    Article  CAS  Google Scholar 

  43. Bera S, Zhanel GG, Schweizer F (2010) Antibacterial activity of guanidinylated neomycin B-and kanamycin A-derived amphiphilic lipid conjugates. J Antimicrob Chemother 65:1224–1227

    Article  CAS  Google Scholar 

  44. Wei D, Ma Q, Guan Y, Hu F, Zheng A, Zhang X, Teng Z, Jiang H (2009) Structural characterization and antibacterial activity of oligoguanidine (polyhexamethylene guanidine hydrochloride). Mater Sci Eng C 29:1776–1780

    Article  CAS  Google Scholar 

  45. Avadanei M, Drobota M, Stoica I, Rusu E, Barboiu V (2010) Surface morphology and amide concentration depth profile of aminolyzed poly(ethylene terephthalate) films. J Polym Sci Part A Polym Chem 48:5456–5467

    Article  CAS  Google Scholar 

  46. Wang CX, Lv JC, Gao DW, Liu GL, Jin LM, Liu JH (2013) Surface modification and aging effect of polysulfonamide yarns treated by atmospheric pressure plasma. Fiber Polym 14:1478–1484

    Article  CAS  Google Scholar 

  47. Noel S, Liberelle B, Robitaille L, Crescenzo GD (2011) Quantification of primary amine groups available for subsequent biofunctionalization of polymer surfaces. Bioconjugate Chem 22:1690–1699

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Key Laboratory of Advanced Polymer Materials of Shanghai (Grant No. ZD20170203) and Shanghai Leading Academic Discipline Project (B502) for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dafu Wei or Yong Guan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Wei, D., Jiang, Y. et al. Surface chemical bonding with poly(hexamethylene guanidine) for non-leaching antimicrobial poly(ethylene terephthalate). J Mater Sci 54, 2699–2711 (2019). https://doi.org/10.1007/s10853-018-2966-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2966-0

Keywords

Navigation