Skip to main content
Log in

Preparation of the all-solid-state Z-scheme WO3/Ag/AgCl film on glass accelerating the photodegradation of pollutants under visible light

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tungsten oxide (WO3) is a well-known photocatalyst, but its application is restricted due to its low conduction band and reduction power. In addition, WO3 catalyst in powder forms has little application prospect because of difficulties in separation and regeneration. In this work, we prepared WO3/Ag/AgCl films on conventional glass that not only have much enhanced photocatalytic capability but also can be readily regenerated. The WO3 film was prepared on glass substrate by calcination of spin-coated W precursor. Ag/AgCl particles were then deposited on WO3 film by an impregnating–precipitation–photoreduction method. The photocatalytic efficiency of WO3/Ag/AgCl was evaluated by using methyl orange (MO) and Rhodamine B (RhB) as target pollutants. The highest photocatalytic performance was achieved with the 3-WO3/Ag/AgCl film, being 18 and 13 times higher than that of pure WO3 film for degradation of MO and RhB, respectively. The degradation rate for both MO and RhB by 3-WO3/Ag/AgCl film catalyst decreased by less than 5% after five cycled tests. The photodegradation mechanism was discussed based on the electrochemical impedance spectroscopy Nyquist tests, photoelectrochemical analysis and reactive oxygen species scavenging experiments. A possible all-solid-state Z-scheme mechanism is proposed based on the photoelectron chemical tests and radical trapping experiments. This study provides a feasible technique to prepare a photocatalytic film with practicability and reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Jones VJ, Rose NL, Self AE, Solovieva N, Yang H (2015) Evidence of global pollution and recent environmental change in Kamchatka, Russia. Glob Planet 134:82–90

    Article  Google Scholar 

  2. Zhu Z, Yan Y, Li J (2016) One-step synthesis of flower-like WO3/Bi2WO6, heterojunction with enhanced visible light photocatalytic activity. J Mater Sci 51:2112–2120. https://doi.org/10.1007/s10853-015-9521-z

    Article  CAS  Google Scholar 

  3. Low J, Cheng B, Yu J (2017) Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci 392:658–686

    Article  CAS  Google Scholar 

  4. Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C 6:186–205

    Article  CAS  Google Scholar 

  5. Yu CJ, Zhang L, Yu J (2002) Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration. New J Chem 26:416–420

    Article  CAS  Google Scholar 

  6. Chai SY, Kim YJ, Jung MH, Chakraborty AK, Jung D, Lee WI (2009) Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. J Catal 262:144–149

    Article  CAS  Google Scholar 

  7. Carvalho HWP, Batista APL, Bertholdo R, Santilli CV, Pulcinelli SH, Ramalho TC (2010) Photocatalyst TiO2–Co: the effect of doping depth profile on methylene blue degradation. J Mater Sci 45:5698–5703. https://doi.org/10.1007/s10853-010-4639-5

    Article  CAS  Google Scholar 

  8. Wang Y, Shi R, Lin J, Zhu Y (2011) Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ Sci 4:2922–2929

    Article  CAS  Google Scholar 

  9. Iskandar F, Nandiyanto ABD, Yun KM, Hogan CJ, Okuyama K, Biswas P (2007) Enhanced photocatalytic performance of brookite TiO2 macroporous particles prepared by spray drying with colloidal templating. Adv Mater 19:1408–1412

    Article  CAS  Google Scholar 

  10. Ohno Teruhisa, Mitsui Takahiro, Matsumura Michio (2003) Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett 32:364–365

    Article  CAS  Google Scholar 

  11. O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  12. Zhu W, Liu J, Yu S, Zhou Y, Yan X (2016) Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. J Hazard Mater 318:407–416

    Article  CAS  Google Scholar 

  13. Ma B, Guo J, Dai WL, Fan K (2012) Ag–AgCl/WO3 hollow sphere with flower-like structure and superior visible photocatalytic activity. Appl Catal B 123:193–199

    Article  Google Scholar 

  14. Zhou J, Cheng Y, Yu J (2011) Preparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin films. J Photochem Photobiol A 223:82–87

    Article  CAS  Google Scholar 

  15. Abe R, Takami H, Murakami N, Ohtani B (2008) Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J Am Chem Soc 130:7780–7781

    Article  CAS  Google Scholar 

  16. Chen D, Gao L, Yasumori A, Kuroda K, Sugahara Y (2008) Size-and shape-controlled conversion of tungstate-based inorganic–organic hybrid belts to WO3 nanoplates with high specific surface areas. Small 4:1813–1822

    Article  CAS  Google Scholar 

  17. Ham DJ, Phuruangrat A, Thongtem S, Lee JS (2010) Hydrothermal synthesis of monoclinic WO3 nanoplates and nanorods used as an electrocatalyst for hydrogen evolution reactions from water. Chem Eng J 165:365–369

    Article  CAS  Google Scholar 

  18. Tong M, Dai G, Wu Y, He X, Gao D (2001) WO3 thin film prepared by PECVD technique and its gas sensing properties to NO2. J Mater Sci 36:2535–2538. https://doi.org/10.1023/A:1017950619864

    Article  CAS  Google Scholar 

  19. Deepa M, Sharma N, Varshney P, Varma SP, Agnihotry SA (2000) FTIR investigations of solid precursor materials for sol-gel deposition of WO3 based electrochromic films. J Mater Sci 35:5313–5318. https://doi.org/10.1023/A:1004838627252

    Article  CAS  Google Scholar 

  20. Bose RJ, Illyasukutty N, Tan KS, Rawat RS, Matham MV, Kohler H, Pillai VPM (2018) Preparation and characterization of Pt loaded WO3 films suitable for gas sensing applications. Appl Surf Sci 440:320–330

    Article  Google Scholar 

  21. Yan Z, Wei W, Xie J, Meng S, Lü X, Zhu J (2013) An ion exchange route to produce WO3 nanobars as Pt electrocatalyst promoter for oxygen reduction reaction. J Power Sources 222:218–224

    Article  CAS  Google Scholar 

  22. Zhu W, Liu J, Yu S, Zhou Y, Yan X (2016) Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. J Hazard Mater 318:407–416

    Article  CAS  Google Scholar 

  23. Katsumata H, Oda Y, Kaneco S, Suzuki T (2013) Photocatalytic activity of Ag/CuO/WO3 under visible-light irradiation. RSC Adv 3:5028–5035

    Article  CAS  Google Scholar 

  24. Zhang T, Zhu Z, Chen H, Bai Y, Xiao S, Zheng X, Yang S (2015) Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study. Nanoscale 7:2933–2940

    Article  CAS  Google Scholar 

  25. Sun Y, Murphy CJ, Reyes-Gil KR, Reyes-Garcia EA, Thornton JM, Morris NA, Raftery D (2009) Photoelectrochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis. Int J Hydrog Energy 34:8476–8484

    Article  CAS  Google Scholar 

  26. Iskandar F, Nandiyanto ABD, Yun KM, Hogan CJ, Okuyama K, Biswas P (2007) Enhanced photocatalytic performance of brookite TiO2 macroporous particles prepared by spray drying with colloidal templating. Adv Mater 19:1408–1412

    Article  CAS  Google Scholar 

  27. Khan SU, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245

    Article  CAS  Google Scholar 

  28. Yu JC, Yu J, Ho W, Jiang Z, Zhang L (2002) Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14:3808–3816

    Article  CAS  Google Scholar 

  29. Ye L, Liu J, Gong C, Tian L, Peng T, Zan L (2012) Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge. ACS Catal 2:1677–1683

    Article  CAS  Google Scholar 

  30. Yu J, Sun D, Wang T, Li F (2018) Fabrication of Ag@AgCl/ZnO submicron wire film catalyst on glass substrate with excellent visible light photocatalytic activity and reusability. Chem Eng J 334:225–236

    Article  CAS  Google Scholar 

  31. Liu S, Yu J, Wang T, Li F (2017) A multifunctional Ag/PAOCG reusable substrate for p-nitrophenol reduction and SERS applications. J Mater Sci 52:13736–13748. https://doi.org/10.1007/s10853-017-1461-3

    Article  CAS  Google Scholar 

  32. Yu J, Yang J, Sun D, Wang T (2016) A novel nanoporous surface for immobilization and expression of functional chemicals. Mater Lett 180:148–152

    Article  Google Scholar 

  33. Zhang S, Li J, Wang X, Huang Y, Zeng M, Xu J (2014) In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis. ACS Appl Mater Interfaces 6:22116–22125

    Article  CAS  Google Scholar 

  34. Ye L, Liu J, Gong C, Tian L, Peng T, Zan L (2012) Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge. ACS Catal 2:1677–1683

    Article  CAS  Google Scholar 

  35. Li H, Sun Y, Cai B, Gan S, Han D, Niu L, Wu T (2015) Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (0 4 0) with enhancing photoelectrochemical and photocatalytic performance. Appl Catal B 170:206–214

    Article  Google Scholar 

  36. Gao L, Gan W, Cao G, Zhan X, Qiang T, Li J (2017) Visible-light activate Ag/WO3 films based on wood with enhanced negative oxygen ions production properties. Appl Surf Sci 425:889–895

    Article  CAS  Google Scholar 

  37. Hashemi A, Bahari A, Ghasemi S (2018) Effect of annealing treatment on optical properties and microstructural variation of WO3 /Ag/WO3 multilayer nano-films. Bull Mater Sci 41:45

    Article  Google Scholar 

  38. Ma B, Guo J, Dai WL, Fan K (2012) Ag–AgCl/WO3 hollow sphere with flower-like structure and superior visible photocatalytic activity. Appl Catal B 123:193–199

    Article  Google Scholar 

  39. Adhikari R, Gyawali G, Sekino T, Lee SW (2013) Microwave assisted hydrothermal synthesis of Ag/AgCl/WO3 photocatalyst and its photocatalytic activity under simulated solar light. J Solid State Chem 197:560–565

    Article  CAS  Google Scholar 

  40. Feng Z, Yu J, Sun D, Wang T (2016) Visible-light-driven photocatalysts Ag/AgCl dispersed on mesoporous Al2O3 with enhanced photocatalytic performance. J Colloid Interface Sci 480:184–190

    Article  CAS  Google Scholar 

  41. Tang Y, Jiang Z, Deng J, Gong D, Lai Y, Tay HT, Chen Z (2012) Synthesis of nanostructured silver/silver halides on titanate surfaces and their visible-light photocatalytic performance. ACS Appl Mater Interfaces 4:438–446

    Article  CAS  Google Scholar 

  42. Yang X, Tang H, Xu J, Antonietti M, Shalom M (2015) Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution. Chemsuschem 8:1350–1358

    Article  CAS  Google Scholar 

  43. Ma BC, Ghasimi S, Landfester K, Vilela F, Zhang KA (2015) Conjugated microporous polymer nanoparticles with enhanced dispersibility and water compatibility for photocatalytic applications. J Mater Chem A 3:16064–16071

    Article  CAS  Google Scholar 

  44. Lv X, Wang T, Jiang W (2018) Preparation of Ag@AgCl/g-C3N4/TiO2 porous ceramic films with enhanced photocatalysis performance and self-cleaning effect. Ceram Int 44:9326–9337

    Article  CAS  Google Scholar 

  45. Liao W, Zhang Y, Zhang M, Murugananthan M, Yoshihara S (2013) Photoelectrocatalytic degradation of microcystin-LR using Ag/AgCl/TiO2 nanotube arrays electrode under visible light irradiation. Chem Eng J 231:455–463

    Article  CAS  Google Scholar 

  46. Yang Y, Zhang Y, Dong M, Yan T, Zhang M, Zeng Q (2017) Highly efficient degradation of thidiazuron with Ag/AgCl-activated carbon composites under LED light irradiation. J Hazard Mater 335:92–99

    Article  CAS  Google Scholar 

  47. Huang W, Jing C, Zhang X, Tang M, Tang L, Wu M, Liu N (2018) Integration of plasmonic effect into spindle-shaped MIL-88A (Fe): steering charge flow for enhanced visible-light photocatalytic degradation of ibuprofen. Chem Eng J 349:603–612

    Article  CAS  Google Scholar 

  48. Yao X, Liu X (2014) One-pot synthesis of ternary Ag2CO3/Ag/AgCl photocatalyst in natural geothermal water with enhanced photocatalytic activity under visible light irradiation. J Hazard Mater 280:260–268

    Article  CAS  Google Scholar 

  49. Zhan F, Yang Y, Li W, Li J, Liu W, Li Y, Chen Q (2016) Preparation of DyVO4/WO3 heterojunction plate array films with enhanced photoelectrochemical activity. RSC Adv 6:10393–10400

    Article  CAS  Google Scholar 

  50. Tanaka A, Hashimoto K, Kominami H (2014) Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. J Am Chem Soc 136:586–589

    Article  CAS  Google Scholar 

  51. Hashemi A, Bahari A, Ghasemi S (2018) Synthesis and characterization of cross-linked nanocomposite as a gate dielectric for p-type silicon field-effect transistor. J Electron Mater 47:3717–3726

    Article  CAS  Google Scholar 

  52. Hashemi A, Bahari A, Ghasemi S (2017) The low threshold voltage n-type silicon transistors based on a polymer/silica nanocomposite gate dielectric: the effect of annealing temperatures on their operation. Appl Surf Sci 416:234–240

    Article  CAS  Google Scholar 

  53. Hashemi A, Bahari A, Ghasemi S (2017) Reduction the leakage current through povidone-SiO2 nano-composite as a promising gate dielectric of FETs. J Mater Sci Mater Electron 28:13313–13319

    Article  CAS  Google Scholar 

  54. Zhu M, Chen P, Liu M (2011) Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano 5:4529–4536

    Article  CAS  Google Scholar 

  55. Chen T, Zheng Y, Lin JM, Chen G (2008) Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry. J Am Soc Mass Spectrom 19:997–1003

    Article  CAS  Google Scholar 

  56. Shi W, Zhang X, Brillet J, Huang D, Li M, Wang M, Shen Y (2016) Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration. Carbon 105:387–393

    Article  CAS  Google Scholar 

  57. Cui L, Ding X, Wang Y, Shi H, Huang L, Zuo Y, Kang S (2017) Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light. Appl Surf Sci 391:202–210

    Article  CAS  Google Scholar 

  58. Shi L, Liang L, Ma J, Meng Y, Zhong S, Wang F, Sun J (2014) Highly efficient visible light-driven Ag/AgBr/ZnO composite photocatalyst for degrading Rhodamine B. Ceram Int 40:3495–3502

    Article  CAS  Google Scholar 

  59. Liang Y, Lin S, Liu L, Hu J, Cui W (2015) Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO6: enhanced photocatalytic degradation under visible light irradiation. Appl Catal B 164:192–203

    Article  CAS  Google Scholar 

  60. Chen S, Hu Y, Meng S, Fu X (2014) Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4–WO3. Appl Catal B 150:564–573

    Article  Google Scholar 

  61. Wang X, Li S, Ma Y, Yu H, Yu J (2011) H2WO4·H2O/Ag/AgCl composite nanoplates: a plasmonic Z-scheme visible-light photocatalyst. J Phys Chem C 115:14648–14655

    Article  CAS  Google Scholar 

  62. Hou J, Wang Z, Yang C, Zhou W, Jiao S, Zhu H (2013) Hierarchically plasmonic Z-scheme photocatalyst of Ag/AgCl nanocrystals decorated mesoporous single-crystalline metastable Bi20TiO32 nanosheets. J Phys Chem C 117:5132–5141

    Article  CAS  Google Scholar 

  63. Kumar SG, Rao KK (2015) Tungsten-based nanomaterials (WO3 & Bi2WO6): modifications related to charge carrier transfer mechanisms and photocatalytic applications. Appl Surf Sci 355:939–958

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Environmental Protection Scientific Research Project of Jiangsu Province (2016056), National Key R&D Program of China (2016YFB0302800), the Qing Lan Project, the Weapon Research Support Fund (No. 62201070827), a Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Basic Product Innovation Technology Research Project of Explosives, the Weapon Research Support Fund (62201070804).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianhe Wang or Wei Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, H., Cao, X., Yu, J. et al. Preparation of the all-solid-state Z-scheme WO3/Ag/AgCl film on glass accelerating the photodegradation of pollutants under visible light. J Mater Sci 54, 286–301 (2019). https://doi.org/10.1007/s10853-018-2856-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2856-5

Keywords

Navigation