Skip to main content
Log in

Microstructure and corrosion characterization of the nugget region in dissimilar friction-stir-welded AA5083 and AA1050

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metallurgical structure, mechanical properties and electrochemical behavior of dissimilar friction stir welding (FSW) between structural AA5083 and AA1050 alloys were investigated in this study. Optical microscopy and field emission scanning electron microscopy observations showed that the nugget zone (NZ) possesses equiaxed recrystallized grains of the two alloys with a flowing shape. Energy-dispersive spectroscopy analysis revealed that NZ is mainly composed of the advancing side alloy. The ultimate tensile and yield strengths of the dissimilar FSW joint were higher than those of AA1050 and lower than those of AA5083. Consequently, fracture occurred on AA1050 side during the tensile tests. The potentiodynamic polarization (PDP) results revealed that the passive current density of the FSW joint was in between that of AA1050 and AA5083. A modified Randles equivalent circuit was used to simulate the obtained experimental data of electrochemical impedance spectroscopy measurements. The acquired impedance parameters were in good agreement with the PDP measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Pérez-Bergquist SJ, Gray GT, Cerreta EK, Trujillo CP, Pérez-Bergquist A (2011) The dynamic and quasi-static mechanical response of three aluminum armor alloys: 5059, 5083 and 7039. Mater Sci Eng, A 528:8733–8741

    Article  Google Scholar 

  2. Katsas S, Nikolaou J, Papadimitriou G (2006) Microstructural changes accompanying repair welding in 5xxx aluminium alloys and their effect on the mechanical properties. Mater Des 27:968–975

    Article  CAS  Google Scholar 

  3. Fattah-alhosseini A, Naseri M, Alemi MH (2017) Effect of particles content on microstructure, mechanical properties, and electrochemical behavior of aluminum-based hybrid composite processed by accumulative roll bonding process. Metall Mater Trans A 48(3):1343–1354

    Article  CAS  Google Scholar 

  4. Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, Dawes CJ (1991) International patent application PCT/GB92/02203 and GB Patent Application 9125978.8, UK Patent Office, London, December 6, 1991

  5. Dawes CJ, Thomas WM (1995) TWI Bulletin 6, November/December, 1995, 124

  6. Lee WB, Yeon YM, Jung SB (2003) The improvement of mechanical properties of friction-stir-welded A356 Al alloy. Mater Sci Eng, A 355:154–159

    Article  Google Scholar 

  7. Nandan R, Roy GG, Lienert TJ, Debroy T (2007) Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater 55:883–895

    Article  CAS  Google Scholar 

  8. Fattah-alhosseini A, Taheri AH (2015) Effect of friction stir welding on corrosion behavior of pure copper in 3.5 wt% NaCl solution. J Manuf Process 20:98–103

    Article  Google Scholar 

  9. Sato YS, Kokava H (2001) Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum. Metall Mater Trans A 32:3023–3031

    Article  Google Scholar 

  10. Elangovan K, Balasubramanian V (2008) Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminum alloy. Mater Des 29:362–373

    Article  CAS  Google Scholar 

  11. Babu S, Elangovan K, Balasubramanian V, Balasubramanian M (2009) Optimizing friction stir welding parameters to maximize tensile strength of AA2219 aluminum alloy joints. Met Mater Int 15:321–330

    Article  CAS  Google Scholar 

  12. Zhang Z, Xiao BL, Ma ZY (2012) Effect of welding parameters on microstructure and mechanical properties of friction stir welded 2219Al-T6 joints. J Mater Sci 47:4075–4086. https://doi.org/10.1007/s10853-012-6261-1

    Article  CAS  Google Scholar 

  13. Liu HJ, Zhou L, Liu QW (2010) Microstructural characteristics and mechanical properties of friction stir welded joints of Ti–6Al–4V titanium alloy. Mater Des 31:1650–1655

    Article  CAS  Google Scholar 

  14. Zhou L, Liu HJ, Liu QW (2010) Effect of rotation speed on microstructure and mechanical properties of Ti–6Al–4V friction stir welded joints. Mater Des 31:2631–2636

    Article  CAS  Google Scholar 

  15. Zhou L, Liu HJ, Liu P, Liu QW (2009) The stir zone microstructure and its formation mechanism in Ti–6Al–4V friction stir welds. Scr Mater 61:596–599

    Article  CAS  Google Scholar 

  16. Shen C, Zhang J, Ge J (2011) Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld. J Environ Sci 23:S32–S35

    Article  Google Scholar 

  17. Park SK, Hong ST, Park JH, Park KY, Kwon YJ, Son HJ (2010) Effect of material locations on properties of friction stir welding joints of dissimilar aluminium alloys. Sci Technol Weld Join 15:331–336

    Article  CAS  Google Scholar 

  18. Liu XC, Sun YF, Fujii H (2017) Clarification of microstructure evolution of aluminum during friction stir welding using liquid CO2 rapid cooling. Mater Des 129:151–163

    Article  CAS  Google Scholar 

  19. Cabibbo M, Forcellese A, Simoncini M, Pieralisi M, Ciccarelli D (2016) Effect of welding motion and pre-/post-annealing of friction stir welded AA5754 joints. Mater Des 93:146–159

    Article  CAS  Google Scholar 

  20. Aval HJ (2015) Microstructure and residual stress distributions in friction stir welding of dissimilar aluminium alloys. Mater Des 87:405–413

    Article  Google Scholar 

  21. Carter H, Stanisaw D, Marek B (2008) A model of material flow during friction stir welding. Mater Charact 59:1206–1214

    Article  Google Scholar 

  22. Hu ZL, Wang XS, Yuan SJ (2012) Quantitative investigation of the tensile plastic deformation characteristic and microstructure for friction stir welded 2024 aluminum alloy. Mater Charact 73:114–123

    Article  CAS  Google Scholar 

  23. Amra M, Ranjbar Kh, Dehmolaei R (2015) Mechanical properties and corrosion behavior of CeO2 and SiC incorporated Al5083 alloy surface composites. J Mater Eng Perform 24(8):3169–3179

    Article  CAS  Google Scholar 

  24. Alvand M, Naseri M, Borhani E, Abdollah-Pour H (2017) Nano/ultrafine grained AA2024 alloy processed by accumulative roll bonding: a study of microstructure, deformation texture and mechanical properties. J Alloy Compd 712:517–525

    Article  CAS  Google Scholar 

  25. Amra M, Ranjbar Kh, Hosseini SA (2018) Microstructure and wear performance of Al5083/CeO2/SiC mono and hybrid surface composites fabricated by friction stir processing. Trans Nonferrous Metals Soc China 28(5):866–878

    Article  Google Scholar 

  26. Chowdhury SM, Chen DL, Bhole SD, Cao X (2010) Tensile properties of a friction stir welded magnesium alloy: effect of pin tool thread orientation and weld pitch. Mater Sci Eng A 527:6064–6075

    Article  Google Scholar 

  27. Ueji R, Fujii H, Cui L, Nishioka A, Kunishige K, Nogi K (2006) Friction stir welding of ultrafine grained plain low-carbon steel formed by the martensite process. Mater Sci Eng A 423:324–330

    Article  Google Scholar 

  28. Gashti SO, Fattah-alhosseini A, Mazaheri Y, Keshavarz MK (2016) Microstructure, mechanical properties and electrochemical behavior of AA1050 processed by accumulative roll bonding (ARB). J Alloys Compd 688:44–55

    Article  CAS  Google Scholar 

  29. Naseri M, Hassani A, Tajally M (2015) An alternative method for manufacturing Al/B4C/SiC hybrid composite strips by cross accumulative roll bonding (CARB) process. Ceram Int 41(10, Part A):13461–13469

    Article  CAS  Google Scholar 

  30. Fattah-alhosseini A, Naseri M, Alemi MH (2016) Corrosion behavior assessment of finely dispersed and highly uniform Al/B4C/SiC hybrid composite fabricated via accumulative roll bonding process. J Manuf Process 22:120–126

    Article  Google Scholar 

  31. Abdulstaar M, Mhaede M, Wagner L, Wollmann M (2014) Corrosion behaviour of Al 1050 severely deformed by rotary swaging. Mater Des 57(2014):325–329

    Article  CAS  Google Scholar 

  32. Davoodi A, Esfahani Z, Sarvghad M (2016) Microstructure and corrosion characterisation of the interfacial region in dissimilar friction stir welded AA5083 to AA7023. Corros Sci 107:133–144

    Article  CAS  Google Scholar 

  33. Hariri MB, Shiri SG, Yaghoubinezhad Y, Rahvard MM (2013) The optimum combination of tool rotation rate and traveling speed for obtaining the preferable corrosion behavior and mechanical properties of friction stir welded AA5052 aluminum alloy. Mater Des 50:620–634

    Article  Google Scholar 

  34. Macdonald JR, Barsoukov E (2005) Impedance spectroscopy: theory, experimentand applications. Wiley, Hoboken

    Google Scholar 

  35. Escrivà-Cerdán C, Blasco-Tamarit E, García-García D, García-Antón J, Akid R, Walton J (2013) Effect of temperature on passive film formation of UNS N08031 Cr–Ni alloy in phosphoric acid contaminated with different aggressive anions. Electrochim Acta 111:552–561

    Article  Google Scholar 

  36. Vafaeian S, Fattah-alhosseini A, Keshavarz MK, Mazaheri Y (2016) The influence of cyclic voltammetry passivation on the electrochemical behavior of fine and coarse-grained AISI, 430 ferritic stainless steel in an alkaline solution. J Alloys Compd 677:42–51

    Article  CAS  Google Scholar 

  37. Fattah-alhosseini A, Gashti SO (2015) Corrosion behavior of ultra-fine grained 1050 aluminum alloy fabricated by ARB process in a buffer borate solution. J Mater Eng Perform 24(2015):3386–3393

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the Dr. A. Fattah-alhosseini’s Research Lab at Department of Materials Engineering, Bu-Ali Sina University, Hamedan, Iran. The authors are grateful for these supports. Also, M. Naseri and D. Gholami acknowledge support for the FSW facilities and simulation provided in part by the Materials Processing Simulation Lab (MPSLab), School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naseri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattah-alhosseini, A., Naseri, M., Gholami, D. et al. Microstructure and corrosion characterization of the nugget region in dissimilar friction-stir-welded AA5083 and AA1050. J Mater Sci 54, 777–790 (2019). https://doi.org/10.1007/s10853-018-2820-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2820-4

Keywords

Navigation