Skip to main content
Log in

Preparation and adsorption application of carbon nanofibers with large specific surface area

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon nanofibers (CNFs) with large specific surface area have been conveniently prepared in accordance with the dipping, calcination and etching method without using any metal catalyst. The synthesized nanomaterials were characterized by means of low-angle X-ray diffraction, N2 adsorption–desorption isotherm, scanning electron microscope and transmission electron microscope, etc., technique. And the adsorption activity of as-prepared CNFs was also investigated by adsorption of pollutant methylene blue in water. Results show that as-synthesized CNFs possess high aspect ratio, large specific surface area up to 973.4 m2/g, pore volume of 0.875 cm3/g and pore size of 1.7 nm as well as a large amount of micropores. The specific surface area of as-prepared nanomaterials is far higher than that of carbon nanofibers prepared according to traditional method. And as-obtained CNFs display very high adsorption activities for the organic dyes in water, and the maximum adsorption capacity is up to 405.23 mg/g. And that the adsorption process is well in conformity with pseudo-second-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ihsanullah, Al-Khaldi FA, Abusharkh B, Khaled M, Atieh MA, Nasser MS, Laoui T, Saleh TA, Agarwal S, Tyagi I, Gupta VK (2015) Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents. J Mol Liq 204:255–263

    Article  CAS  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  3. Sun XS, Ou HJ, Miao CF, Chen LG (2015) Removal of sudan dyes from aqueous solution by magnetic carbon nanotubes: equilibrium, kinetic and thermodynamic studies. J Ind Eng Chem 22:373–377

    Article  CAS  Google Scholar 

  4. Chung MW, Choi CH (2017) Carbon nanofibers as parent materials for a graphene- based Fe–N–C catalyst for the oxygen reduction reaction. Catal Today 295:125–131

    Article  CAS  Google Scholar 

  5. Jiménez-Soto JM, Cárdenas S, Valcárcel M (2012) Evaluation of single-walled carbon nanohorns as sorbent in dispersive micro solid-phase extraction. Anal Chim Acta 714:76–81

    Article  Google Scholar 

  6. Jiménez-Soto JM, Cárdenas S, Valcárcel M (2012) Dispersive micro solid-phase extraction of triazines from waters using oxidized single-walled carbon nanohorns as sorbent. J Chromatogr A 1245:17–23

    Article  Google Scholar 

  7. Zhu CZ, Guo SJ, Fang YX, Dong SJ (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437

    Article  CAS  Google Scholar 

  8. Bose S, Kuila T, Mishra AK, Kim NH, Lee JH (2012) Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J Mater Chem 22:9696–9703

    Article  CAS  Google Scholar 

  9. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  10. Ashokkumar M, Narayanan NT, Reddy ALM, Gupta BK, Chandrasekaran B, Talapatra S, Ajayan PM, Thanikaivelan P (2012) Transforming collagen wastes into doped nanocarbons for sustainable energy applications. Green Chem 14:1689–1695

    Article  CAS  Google Scholar 

  11. Yang YH, Cui JH, Zheng MT, Hu CF, Tan SZ, Xiao Y, Yang Q, Liu YL (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48:380–382

    Article  CAS  Google Scholar 

  12. De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev 42:481–510

    Article  Google Scholar 

  13. Chen D, Christensen KO, Ochoa-Fernández E, Yu Z, Tøtdal B, Latorre N, Monzón A, Holmen A (2005) Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J Catal 229:82–96

    Article  CAS  Google Scholar 

  14. Feng L, Xie N, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7:3919–3945

    Article  CAS  Google Scholar 

  15. Chinthaginjala JK, Seshan K, Lefferts L (2007) Preparation and application of carbon-nanofiber based microstructured materials as catalyst supports. Ind Eng Chem Res 46:3968–3978

    Article  CAS  Google Scholar 

  16. Fang W, Yang S, Yuan TQ, Charlton A, Sun RC (2017) Effects of various surfactants on alkali lignin electrospinning ability and spun fibers. Ind Eng Chem Res 56:9551–9559

    Article  CAS  Google Scholar 

  17. Park C, Engel ES, Crowe A, Gilbert TR, Rodriguez NM (2000) Use of carbon nanofibers in the removal of organic solvents from water. Langmuir 16:8050–8056

    Article  CAS  Google Scholar 

  18. Chakraborty A, Deva AD, Sharma A, Verma N (2011) Adsorbents based on carbon microfibers and carbon nanofibers for the removal of phenol and lead from water. J Colloid Interface Sci 359:228–239

    Article  CAS  Google Scholar 

  19. Li X, Chen S, Fan X, Quan X, Tan F, Hang Y, Gao J (2015) Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: in comparison with powder activated carbon. J Colloid Interface Sci 447:120–127

    Article  CAS  Google Scholar 

  20. Nan D, Liu J, Ma W (2015) Electrospun phenolic resin-based carbon ultrafine fibers with abundant ultra-small micropores for CO2 adsorption. Chem Eng J 276:44–50

    Article  CAS  Google Scholar 

  21. Lee S (2010) Application of activated carbon fiber (ACF) for arsenic removal in aqueous solution. Korean J Chem Eng 27:110–115

    Article  CAS  Google Scholar 

  22. Oh GY, Ju YW, Kim MY, Jung HR, Kim HJ, Lee WJ (2008) Adsorption of toluene on carbon nanofibers prepared by electrospinning. Sci Total Environ 393:341–347

    Article  CAS  Google Scholar 

  23. Yu F, Li Y, Han S, Ma J (2016) Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 153:365–385

    Article  CAS  Google Scholar 

  24. Tu L, Duan W, Xiao W, Fu C, Wang A, Zheng Y (2018) Calotropis gigantea, fiber derived carbon fiber enables fast and efficient absorption of oils and organic solvents. Sep Purif Technol 192:30–35

    Article  CAS  Google Scholar 

  25. Wang J, Ge H, Bao W (2015) Synthesis and characteristics of SBA-15 with thick pore wall and high hydrothermal stability. Mater Lett 145:312–315

    Article  CAS  Google Scholar 

  26. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712–10713

    Article  CAS  Google Scholar 

  27. Li P, Zhao TJ, Zhou JH, Sui ZJ, Dai YC, Yuan WK (2005) Characterization of carbon nanofiber composites synthesized by shaping process. Carbon 43:2701–2710

    Article  CAS  Google Scholar 

  28. Toebes ML, Bitter JH, Dillen AJV, Jong KPD (2002) Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers. Catal Today 76:33–42

    Article  CAS  Google Scholar 

  29. Toebes ML, Heeswijk JMPV, Bitter JH, Dillen AJV, Jong KPD (2004) The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers. Carbon 42:307–315

    Article  CAS  Google Scholar 

  30. Ji L, Lin Z, Medford AJ, Zhang X (2009) Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material. Carbon 47:3346–3354

    Article  CAS  Google Scholar 

  31. Zhang L, Jiang Y, Wang L, Zhang C, Liu S (2016) Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor. Electrochim Acta 196:189–196

    Article  CAS  Google Scholar 

  32. Bui NN, Kim BH, Yang KS, Cruz MED, Ferraris JP (2009) Activated carbon fibers from electrospinning of polyacrylonitrile/pitch blends. Carbon 47:2538–2539

    Article  CAS  Google Scholar 

  33. Ma C, Song Y, Shi J, Zhang D, Zhai X, Zhong M, Guo Q, Liu L (2013) Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes. Carbon 51:290–300

    Article  CAS  Google Scholar 

  34. Ma C, Wang R, Xie Z, Zhang H, Li Z, Shi J (2017) Preparation and molten salt-assisted KOH activation of porous carbon nanofibers for use as supercapacitor electrodes. J Porous Mater 24:1437–1445

    Article  CAS  Google Scholar 

  35. Zheng M, Cao J, Ke X, Ji G, Chen Y, Shen K, Tao J (2007) One-step synthesis of new mesoporous carbon nanofibers through an easy template method. Carbon 45:1111–1113

    Article  CAS  Google Scholar 

  36. Yoon SB, Kim JY, Kooli F, Lee CW, Yu JS (2003) Synthetic control of ordered and disordered arrays of carbon nanofibers from SBA-15 silica templates. Chem Commun 9:1740–1741

    Article  Google Scholar 

  37. Prabhu A, AlShoaibi A, Srinivasakannan C (2014) Synthesis and characterization of mesoporous carbon by simple one pot method. Mater Lett 136:81–84

    Article  CAS  Google Scholar 

  38. Fu J, Chen Z, Xu Q, Chen J, Huang X, Tang X (2011) The production of porous carbon nanofibers from cross-linked polyphosphazene nanofibers. Carbon 49:1037–1039

    Article  CAS  Google Scholar 

  39. Duman O, Tunç S, Polat TG, Bozoğlan BK (2016) Synthesis of magnetic oxidized multiwalled carbon nanotube-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic methylene blue dye adsorption. Carbohyd Polym 147:79–88

    Article  CAS  Google Scholar 

  40. Almeida CAP, Debacher NA, Downsc AJ, Cotteta L, Mello CAD (2009) Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J Colloid Interface Sci 332:46–53

    Article  CAS  Google Scholar 

  41. Wu XL, Shi Y, Zhong S, Lin H, Chen JR (2016) Facile synthesis of Fe3O4-graphene@mesoporous SiO2 nanocomposites for efficient removal of methylene blue. Appl Surf Sci 378:80–86

    Article  CAS  Google Scholar 

  42. Ai L, Zhang C, Chen Z (2011) Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J Hazard Mater 192:1515–1524

    Article  CAS  Google Scholar 

  43. Chang J, Ma J, Ma Q, Zhang D, Qiao N, Hu M, Ma H (2016) Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Appl Clay Sci 119:132–140

    Article  CAS  Google Scholar 

  44. Li H, Huang G, An C, Hu J, Yang S (2013) Removal of tannin from aqueous solution by adsorption onto treated coal fly ash: kinetic, equilibrium, and thermodynamic studies. Ind Eng Chem Res 52:15923–15931

    Article  CAS  Google Scholar 

  45. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank very much the financial support of the National Natural Science Foundation of China (No. 21502109), Natural Science Foundation of Shaanxi Province (No. 2017JQ2017) and Key Scientific Research Program Foundation of Shaanxi Provincial Education Department (No. 17JS025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Wang.

Ethics declarations

Conflict of interest

The authors declare that have no any of conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, Z., Zhang, Q. et al. Preparation and adsorption application of carbon nanofibers with large specific surface area. J Mater Sci 53, 16466–16475 (2018). https://doi.org/10.1007/s10853-018-2772-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2772-8

Keywords

Navigation